924 resultados para automation control system
Resumo:
Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.
Resumo:
In this paper, the temperature of a pilot-scale batch reaction system is modeled towards the design of a controller based on the explicit model predictive control (EMPC) strategy -- Some mathematical models are developed from experimental data to describe the system behavior -- The simplest, yet reliable, model obtained is a (1,1,1)-order ARX polynomial model for which the mentioned EMPC controller has been designed -- The resultant controller has a reduced mathematical complexity and, according to the successful results obtained in simulations, will be used directly on the real control system in a next stage of the entire experimental framework
Resumo:
This paper describes the application of a Brain Emotional Learning (BEL) controller to improve the response of a SDOF structural system under an earthquake excitation using a magnetorheological (MR) damper. The main goal is to study the performance of a BEL based semi-active control system to generate the control signal for a MR damper. The proposed approach consists of a two controllers: a primary controller based on a BEL algorithm that determines the desired damping force from the system response and a secondary controller that modifies the input current to the MR damper to generate a reference damping force. A parametric model of the damper is used to predict the damping force based on the piston motion and also the current input. A Simulink model of the structural system is developed to analyze the effectiveness of the semi-active controller. Finally, the numerical results are presented and discussed.
Resumo:
Nowadays, the development of intelligent and autonomous vehicles used to perform agricultural activities is essential to improve quantity and quality of agricultural productions. Moreover, with automation techniques it is possible to reduce the usage of agrochemicals and minimize the pollution. The University of Bologna is developing an innovative system for orchard management called ORTO (Orchard Rapid Transportation System). This system involves an autonomous electric vehicle capable to perform agricultural activities inside an orchard structure. The vehicle is equipped with an implement capable to perform different tasks. The purpose of this thesis project is to control the vehicle and the implement to perform an inter-row grass mowing. This kind of task requires a synchronized motion between the traction motors and the implement motors. A motion control system has been developed to generate trajectories and manage their synchronization. Two main trajectories type have been used: a five order polynomial trajectory and a trapezoidal trajectory. These two kinds of trajectories have been chosen in order to perform a uniform grass mowing, paying a particular attention to the constrains of the system. To synchronize the motions, the electronic cams approach has been adopted. A master profile has been generated and all the trajectories have been linked to the master motion. Moreover, a safety system has been developed. The aim of this system is firstly to improve the safety during the motion, furthermore it allows to manage obstacle detection and avoidance. Using some particular techniques obstacles can be detected and recovery action can be performed to overcome the problem. Once the measured force reaches the predefined force threshold, then the vehicle stops immediately its motion. The whole project has been developed by employing Matlab and Simulink. Eventually, the software has been translated into C code and executed on the TI Lauchpad XL board.
Resumo:
In this thesis, the study and the simulation of two advanced sensorless speed control techniques for a surface PMSM are presented. The aim is to implement a sensorless control algorithm for a submarine auxiliary propulsion system. This experimental activity is the result of a project collaboration with L3Harris Calzoni, a leader company in A&D systems for naval handling in military field. A Simulink model of the whole electric drive has been developed. Due to the satisfactory results of the simulations, the sensorless control system has been implemented in C code for STM32 environment. Finally, several tests on a real brushless machine have been carried out while the motor was connected to a mechanical load to simulate the real scenario of the final application. All the experimental results have been recorded through a graphical interface software developed at Calzoni.
Resumo:
In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.
Resumo:
This paper deals with the long run average continuous control problem of piecewise deterministic Markov processes (PDMPs) taking values in a general Borel space and with compact action space depending on the state variable. The control variable acts on the jump rate and transition measure of the PDMP, and the running and boundary costs are assumed to be positive but not necessarily bounded. Our first main result is to obtain an optimality equation for the long run average cost in terms of a discrete-time optimality equation related to the embedded Markov chain given by the postjump location of the PDMP. Our second main result guarantees the existence of a feedback measurable selector for the discrete-time optimality equation by establishing a connection between this equation and an integro-differential equation. Our final main result is to obtain some sufficient conditions for the existence of a solution for a discrete-time optimality inequality and an ordinary optimal feedback control for the long run average cost using the so-called vanishing discount approach. Two examples are presented illustrating the possible applications of the results developed in the paper.
Resumo:
This paper studies semistability of the recursive Kalman filter in the context of linear time-varying (LTV), possibly nondetectable systems with incorrect noise information. Semistability is a key property, as it ensures that the actual estimation error does not diverge exponentially. We explore structural properties of the filter to obtain a necessary and sufficient condition for the filter to be semistable. The condition does not involve limiting gains nor the solution of Riccati equations, as they can be difficult to obtain numerically and may not exist. We also compare semistability with the notions of stability and stability w.r.t. the initial error covariance, and we show that semistability in a sense makes no distinction between persistent and nonpersistent incorrect noise models, as opposed to stability. In the linear time invariant scenario we obtain algebraic, easy to test conditions for semistability and stability, which complement results available in the context of detectable systems. Illustrative examples are included.
Resumo:
This paper studies a nonlinear, discrete-time matrix system arising in the stability analysis of Kalman filters. These systems present an internal coupling between the state components that gives rise to complex dynamic behavior. The problem of partial stability, which requires that a specific component of the state of the system converge exponentially, is studied and solved. The convergent state component is strongly linked with the behavior of Kalman filters, since it can be used to provide bounds for the error covariance matrix under uncertainties in the noise measurements. We exploit the special features of the system-mainly the connections with linear systems-to obtain an algebraic test for partial stability. Finally, motivated by applications in which polynomial divergence of the estimates is acceptable, we study and solve a partial semistability problem.
Resumo:
The behavior of stability regions of nonlinear autonomous dynamical systems subjected to parameter variation is studied in this paper. In particular, the behavior of stability regions and stability boundaries when the system undergoes a type-zero sadle-node bifurcation on the stability boundary is investigated in this paper. It is shown that the stability regions suffer drastic changes with parameter variation if type-zero saddle-node bifurcations occur on the stability boundary. A complete characterization of these changes in the neighborhood of a type-zero saddle-node bifurcation value is presented in this paper. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed-loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.
Resumo:
Conventional threading operations involve two distinct machining processes: drilling and threading. Therefore, it is time consuming for the tools must be changed and the workpiece has to be moved to another machine. This paper presents an analysis of the combined process (drilling followed by threading) using a single tool for both operations: the tap-milling tool. Before presenting the methodology used to evaluate this hybrid tool, the ODS (operating deflection shapes) basics is shortly described. ODS and finite element modeling (FEM) were used during this research to optimize the process aiming to achieve higher stable machining conditions and increasing the tool life. Both methods allowed the determination of the natural frequencies and displacements of the machining center and optimize the workpiece fixture system. The results showed that there is an excellent correlation between the dynamic stability of the machining center-tool holder and the tool life, avoiding a tool premature catastrophic failure. Nevertheless, evidence showed that the tool is very sensitive to work conditions. Undoubtedly, the use of ODS and FEM eliminate empiric decisions concerning the optimization of machining conditions and increase drastically the tool life. After the ODS and FEM studies, it was possible to optimize the process and work material fixture system and machine more than 30,000 threaded holes without reaching the tool life limit and catastrophic fail.
Resumo:
This paper develops H(infinity) control designs based on neural networks for fully actuated and underactuated cooperative manipulators. The neural networks proposed in this paper only adapt the uncertain dynamics of the robot manipulators. They work as a complement of the nominal model. The H(infinity) performance index includes the position errors as well the squeeze force errors between the manipulator end-effectors and the object, which represents a complete disturbance rejection scenario. For the underactuated case, the squeeze force control problem is more difficult to solve due to the loss of some degrees of manipulator actuation. Results obtained from an actual cooperative manipulator, which is able to work as a fully actuated and an underactuated manipulator, are presented. (C) 2008 Elsevier Ltd. All rights reserved.