605 resultados para aryl chlorides
Resumo:
Weathering steel is commonly used as a cost-effective alternative for bridge superstructures, as the costs and environmental impacts associated with the maintenance/replacement of paint coatings are theoretically eliminated. The performance of weathering steel depends on the proper formation of a surface patina, which consists of a dense layer of corrosion product used to protect the steel from further atmospheric corrosion. The development of the weathering steel patina may be hindered by environmental factors such as humid environments, wetting/drying cycles, sheltering, exposure to de-icing chlorides, and design details that permit water to pond on steel surfaces. Weathering steel bridges constructed over or adjacent to other roadways could be subjected to sufficient salt spray that would impede the development of an adequate patina. Addressing areas of corrosion on a weathering steel bridge superstructure where a protective patina has not formed is often costly and negates the anticipated cost savings for this type of steel superstructure. Early detection of weathering steel corrosion is important to extending the service life of the bridge structure; however, written inspection procedures are not available for inspectors to evaluate the performance or quality of the patina. This project focused on the evaluation of weathering steel bridge structures, including possible methods to assess the quality of the weathering steel patina and to properly maintain the quality of the patina. The objectives of this project are summarized as follows: Identify weathering steel bridge structures that would be most vulnerable to chloride contamination, based on location, exposure, environment, and other factors. Identify locations on an individual weathering steel bridge structure that would be most susceptible to chloride contamination, such as below joints, splash/spray zones, and areas of ponding water or debris. Identify possible testing methods and/or inspection techniques for inspectors to evaluate the quality of the weathering steel patina at locations discussed above. Identify possible methods to measure and evaluate the level of chloride contamination at the locations discussed above. Evaluate the effectiveness of water washing on removing chlorides from the weathering steel patina. Develop a general prioritization for the washing of bridge structures based on the structure’s location, environment, inspection observations, patina evaluation findings, and chloride test results.
Resumo:
Many basic physiological functions exhibit circadian rhythmicity. These functional rhythms are driven, in part, by the circadian clock, an ubiquitous molecular mechanism allowing cells and tissues to anticipate regular environmental events and to prepare for them. This mechanism has been shown to play a particularly important role in maintaining stability (homeostasis) of internal conditions. Because the homeostatic equilibrium is continuously challenged by environmental changes, the role of the circadian clock is thought to consist in the anticipative adjustment of homeostatic pathways in relation with the 24h environmental cycle. The kidney is the principal organ responsible for the regulation of the composition and volume of extracellular fluids (ECF). Several major parameters of kidney function, including renal plasma flow (RPF), glomerular filtration rate (GFR) and tubular reabsorption and secretion have been shown to exhibit strong circadian oscillations. Recent evidence suggest that the circadian clock can be involved in generation of these rhythms through external circadian time cues (e.g. humoral factors, activity and body temperature rhythms) or, trough the intrinsic renal circadian clock. Here, we discuss the role of renal circadian mechanisms in maintaining homeostasis of water and three major ions, namely, Na(+), K(+) and Cl(-).
Resumo:
Cyclosporine is a substrate of cytochrome P450 (CYP) 3A and of the transporter ABCB1, for which polymorphisms have been described. In particular, CYP3A5 *3/*3 genotype results in the absence of CYP3A5 activity, whereas CYP3A7 *1/*1C genotype results in high CYP3A7 expression in adults. Log-transformed dose-adjusted cyclosporine trough concentration and daily dose per weight were compared 1, 3, 6, and 12 months after transplantation between CYP3A and ABCB1 genotypes in 73 renal (n = 64) or lung (n = 9) transplant recipients. CYP3A5 expressors (*1/*3 genotype; n = 8-10) presented significantly lower dose-adjusted cyclosporine trough concentrations (P < 0.05) and required significantly higher daily doses per weight (P < 0.01) than the nonexpressors (*3/*3 genotype; n = 55-59) 1, 3, 6, and 12 months after transplantation. In addition, 7 days after transplantation, more CYP3A5 expressors had uncorrected trough cyclosporine concentration below the target concentration of 200 ng/mL than the nonexpressors (odds ratio = 7.2; 95% confidence interval = 1.4-37.3; P = 0.009). CYP3A4 rs4646437C>T influenced cyclosporine kinetics, the T carriers requiring higher cyclosporine dose. CYP3A7*1C carriers required a 1.4-fold to 1.6-fold higher cyclosporine daily dose during the first year after transplantation (P < 0.05). In conclusion, CYP3A4, CYP3A5, and CYP3A7 polymorphisms affect cyclosporine metabolism, and therefore, their genotyping could be useful, in association with therapeutic drug monitoring, to prospectively optimize cyclosporine prescription in transplant recipients. The administration of a CYP3A genotype-dependent cyclosporine starting dose should therefore be tested prospectively in a randomized controlled clinical trial to assess whether it leads to an improvement of the patients outcome after transplantation, with adequate immunosuppression and decreased toxicity.
Resumo:
Pharmacokinetic variability in drug levels represent for some drugs a major determinant of treatment success, since sub-therapeutic concentrations might lead to toxic reactions, treatment discontinuation or inefficacy. This is true for most antiretroviral drugs, which exhibit high inter-patient variability in their pharmacokinetics that has been partially explained by some genetic and non-genetic factors. The population pharmacokinetic approach represents a very useful tool for the description of the dose-concentration relationship, the quantification of variability in the target population of patients and the identification of influencing factors. It can thus be used to make predictions and dosage adjustment optimization based on Bayesian therapeutic drug monitoring (TDM). This approach has been used to characterize the pharmacokinetics of nevirapine (NVP) in 137 HIV-positive patients followed within the frame of a TDM program. Among tested covariates, body weight, co-administration of a cytochrome (CYP) 3A4 inducer or boosted atazanavir as well as elevated aspartate transaminases showed an effect on NVP elimination. In addition, genetic polymorphism in the CYP2B6 was associated with reduced NVP clearance. Altogether, these factors could explain 26% in NVP variability. Model-based simulations were used to compare the adequacy of different dosage regimens in relation to the therapeutic target associated with treatment efficacy. In conclusion, the population approach is very useful to characterize the pharmacokinetic profile of drugs in a population of interest. The quantification and the identification of the sources of variability is a rational approach to making optimal dosage decision for certain drugs administered chronically.
Resumo:
Results are presented of triaxial testing of three crushed limestones to which either hydrated high-calcium lime, sodium chloride or calcium chloride had been added. Lime was added at rates of 1, 3, 10 and 16 percent, chlorides were added at 0.5 percent rate only. Speciments were compacted using vibratory compaction apparatus and were tested in triaxial compression using lateral pressures from 10 to 100 psi. Triaxial test results indicate that: (1) sodium chloride slightly decreased the angle of internal friction and increased cohesion, (2) calcium chloride slightly increased the angle of internal friction and decreased cohesion, and (3) lime had no appreciable effect on angle of internal friction but increased cohesion, decreased density and increased pore water pressure.
Resumo:
The corrosion of reinforcing steel within concrete has always been a problem in construction of bridge decks. With low slump concrete and epoxy rebar, progress has been made in controlling the corrosion. There is concern, however, that the chloride also attacks the substructures, specifically the pier columns. They are subject to chloride attack by chemical deicers in the drainage from the bridge deck. Piers supporting grade separation bridges are also subject to chlorides contained in the direct splash from the lower level traffic. In this project, a field evaluation was conducted to evaluate the effectiveness of commercially available products in preventing chloride intrusion.
Resumo:
J. Smuda: Geochemical evolution of active porphyry copper tailings impoundments Thesis abstract Mine waste is the largest volume of materials handled in the world. The oxidation of sulfidic mine waste may result in the release of acid mine drainage (AMD) rich in heavy metals and arsenic to the environment, one of the major problems the mining industry is facing today. To control and reduce this environmental impact, it is crucial to identify the main geochemical and hydrological processes influencing contaminant liberation, transport, and retention. This thesis presents the results of a geochemical, mineralogical and stable isotope study (δ2H, δ18O, δ34S) from two active porphyry copper tailings impoundments in Mediterranean (Carén tailings impoundment, El Teniente mine, Central Chile) and hyper-arid climate (Talabre tailings impoundment, Chuquicamata, Northern Chile) from the deposition in alkaline environment (pH 10.5) towards acidification after several years of exposure. The major hydrological results were the identification of vertical contaminant and water transport in the uppermost, not water-saturated zone, triggered by capillary rise due to evaporation, and infiltration downwards due to new tailings deposition, and of horizontal transport in the groundwater zone. At the surface of the sedimented tailings, evaporation of pore water led to the precipitation of Na-Ca-Mg sulfates (e.g., gypsum, tenorite), in hyper-arid climate also halite. At the Carén tailings impoundment, renewed deposition in a 4-week interval inhibited a pH decrease below neutral values and the formation of an efflorescent salt crust. At the Talabre tailings impoundment, deposition breaks of several years resulted in the formation of acidic oxidation zones in the timeframe of less than 4 years. This process enabled the transport of liberated Cu, Zn, and Fe via capillary rise to the surface, where these metals precipitated as heavy-metal sulfates (e.g., devilline, krohnkite) and chlorides (eriochalcite, atacamite). Renewed depositing may dissolve efflorescent salts and transport liberated elements towards the groundwater zone. This zone was found to be highly dynamic due to infiltration and mixing with water from different sources, like groundwater, catchment water, and infiltration from superficial waters. There, Cu was found to be partially mobile due to complexation with Cl (in Cl-rich groundwater, Talabre) and dissolved organic matter (in zones with infiltration of catchment water rich in dissolved organic matter, Carén). A laboratory study on the isotopic fractionation of sulfur and oxygen of sulfate in different minerals groups (water-soluble sulfates, low- and high-crystalline Fe(III) oxyhydroxides) contributed to the use of stable isotopes as tracer of geochemical and transport processes for environmental studies. The results highlight that a detailed geochemical, stable isotope and mineralogical study permits the identification of contamination processes and pathways already during the deposition of mine tailings. This knowledge allows the early planning of adequate actions to reduce and control the environmental impact during tailings deposition and after the closing of the impoundment. J. Smuda: Geochemical evolution of active porphyry copper tailings impoundments Résumé de these Les déchets miniers constituent les plus grands volumes de matériel gérés dans le monde. L'oxydation des déchets miniers sulfuriques peut conduire à la libération de drainages miniers acides (DMA) riches en métaux et arsenic dans l'environnement, ce qui est l'un des principaux problèmes de l'industrie minière aujourd'hui. Pour contrôler et réduire ces impacts sur l'environnement, il est crucial d'identifier les principaux processus géochimiques et hydrologiques influençant la libération, le transport et la rétention des contaminants. Cette thèse présente les résultats d'une étude géochimique, minéralogique et des isotopes stables (δ2H, δ18O, δ34S) sur des déchets miniers de 2 sites de dépôt actifs en climat méditerranéen (Dépôt de déchets de Carén, mine de El Teniente, Centre du Chili) et en climat hyper-aride (Dépôt de déchets de Talabre, mine de Chuquicamata, Nord du Chili). L'objectif était d'étudier l'évolution des déchets de la déposition en milieu alcalin (pH = 10.5) vers l'acidification après plusieurs années d'exposition. Le principal résultat hydrologique a été l'identification de 2 types de transport : un transport vertical de l'eau et des contaminants dans la zone non saturée en surface, induit par la montée capillaire due à l'évaporation et par l'infiltration subséquente de la déposition de sédiments frais ; et un transport horizontal dans la zone des eaux souterraines. À la surface des déchets, l'évaporation de l'eau interstitielle conduit à la précipitation de sulfates de Na-Ca-Mg (ex. gypse, ténorite) et halite en climat hyper-aride. Dans le site de Carén, une nouvelle déposition de déchets frais à 4 semaines intervalle a empêché la baise du pH en deçà des valeurs neutres et la formation d'une croûte de sels efflorescentes en surface. Dans le site de Talabre, les fentes de dessiccation des dépôts ont entraîné la formation d'une zone d'oxydation à pH acide en moins de 4 ans. Ce processus a permis la libération et le transport par capillarité de Cu, Zn, Fe vers la surface, où ces éléments précipitent sous forme de sulfates de métaux lourds (ex., dévilline, krohnkite) de chlorures (ex. ériochalcite, atacamite). Une nouvelle déposition de sédiments frais pourrait dissoudre ces sels et les transporter vers la zone des eaux souterraines. Cette dernière zone était très dynamique en raison du mélange d'eaux provenant de différentes sources, comme les eaux souterraines, l'eau de captage et l'infiltration des eaux superficielles. Egalement dans cette zone, le cuivre était partiellement mobile à cause de la formation de complexe avec le chlore (dans les zone riche en Cl, Talabre) et avec la matière organique dissoute (dans les zones où s'infiltre l'eau de captage riche en matière organique, Carén). Une étude en laboratoire sur le fractionnement des isotopes stables de sulfure et d'oxygène des sulfates dans différents groupes de minéraux (sulfates hydrosolubles, sulfures de oxy-hydroxyde de Fe(III) faiblement ou fortement cristallins) a permis d'apporter une contribution à leur utilisation comme traceurs dans l'étude des processus géochimiques et de transport lors d'études environnementales. Les résultats montrent qu'une étude détaillée de la géochimie, des isotopes stables et de la minéralogie permet d'identifier les processus et les voies de contamination déjà pendant la période de dépôt des déchets miniers. Cette connaissance permet de planifier, dès le début de l'exploitation, des mesures adéquates pour réduire et contrôler l'impact sur l'environnement pendant la période de dépôts de déchets miniers et après la fermeture du site.
Resumo:
Aryl hydrocarbon receptor nuclear translocator (ARNT) is a transcription factor that binds to partners to mediate responses to environmental signals. To investigate its role in the innate immune system, floxed ARNT mice were bred with lysozyme M-Cre recombinase animals to generate lysozyme M-ARNT (LAR) mice with reduced ARNT expression. Myeloid cells of LAR mice had altered mRNA expression and delayed wound healing. Interestingly, when the animals were rendered diabetic, the difference in wound healing between the LAR mice and their littermate controls was no longer present, suggesting that decreased myeloid cell ARNT function may be an important factor in impaired wound healing in diabetes. Deferoxamine (DFO) improves wound healing by increasing hypoxia-inducible factors, which require ARNT for function. DFO was not effective in wounds of LAR mice, again suggesting that myeloid cells are important for normal wound healing and for the full benefit of DFO. These findings suggest that myeloid ARNT is important for immune function and wound healing. Increasing ARNT and, more specifically, myeloid ARNT may be a therapeutic strategy to improve wound healing.
Resumo:
Methadone inhibits the cardiac potassium channel hERG and can cause a prolonged QT interval. Methadone is chiral but its therapeutic activity is mainly due to (R)-methadone. Whole-cell patch-clamp experiments using cells expressing hERG showed that (S)-methadone blocked the hERG current 3.5-fold more potently than (R)-methadone (IC50s (half-maximal inhibitory concentrations) at 37 degrees C: 2 and 7 microM). As CYP2B6 slow metabolizer (SM) status results in a reduced ability to metabolize (S)-methadone, electrocardiograms, CYP2B6 genotypes, and (R)- and (S)-methadone plasma concentrations were obtained for 179 patients receiving (R,S)-methadone. The mean heart-rate-corrected QT (QTc) was higher in CYP2B6 SMs (*6/*6 genotype; 439+/-25 ms; n=11) than in extensive metabolizers (non *6/*6; 421+/-25 ms; n=168; P=0.017). CYP2B6 SM status was associated with an increased risk of prolonged QTc (odds ratio=4.5, 95% confidence interval=1.2-17.7; P=0.03). This study reports the first genetic factor implicated in methadone metabolism that may increase the risk of cardiac arrhythmias and sudden death. This risk could be reduced by the administration of (R)-methadone.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
This research project investigated the effects of concentrated brines of magnesium chloride, calcium chloride, sodium chloride, and calcium magnesium acetate on portland cement concrete. Although known to be effective at deicing and anti-icing, the deleterious effects these chemicals may have on concrete have not been well documented. As a result of this research, it was determined that there is significant evidence that magnesium chloride and calcium chloride chemically interact with hardened portland cement paste in concrete resulting in expansive cracking, increased permeability, and a significant loss in compressive strength. Although the same effects were not seen with sodium chloride brines, it was shown that sodium chloride brines have the highest rate of ingress into hardened concrete. This latter fact is significant with respect to corrosion of embedded steel. The mechanism for attack of hardened cement paste varies with deicer chemical but in general, a chemical reaction between chlorides and cement hydration products results in the dissolution of the hardened cement paste and formation of oxychloride phases, which are expansive. The chemical attack of the hardened cement paste is significantly reduced if supplementary cementitious materials are included in the concrete mixture. Both coal fly ash and ground granulated blast furnace slag were found to be effective at mitigating the chemical attack caused by the deicers tested. In the tests performed, ground granulated blast furnace slag performed better as a mitigation strategy as compared to coal fly ash. Additionally, siloxane and silane sealants were effective at slowing the ingress of deicing chemicals into the concrete and thereby reducing the observed distress. In general, the siloxane sealant appeared to be more effective than the silane, but both were effective and should be considered as a maintenance strategy.
Resumo:
BACKGROUND AND OBJECTIVE: Recent in vitro studies have suggested an important role of cytochrome P450 (CYP) 2B6 and CYP2C19 in methadone metabolism. We aimed to determine the influence of CYP2B6, CYP2C9, and CYP2C19 genetic polymorphism on methadone pharmacokinetics and on the response to treatment. METHODS: We included 209 patients in methadone maintenance treatment on the basis of their response to treatment and their daily methadone dose. Patients were genotyped for CYP2B6, CYP2C9, and CYP2C19. Steady-state trough and peak (R)-, (S)-, and (R,S)-plasma levels and peak-to-trough plasma level ratios were measured. RESULTS: CYP2B6 genotype influences (S)-methadone and, to a lesser extent, (R)-methadone plasma levels, with the median trough (S)-methadone plasma levels being 105, 122, and 209 ng . kg/mL . mg for the noncarriers of allele *6, heterozygous carriers, and homozygous carriers (*6/*6), respectively (P = .0004). CYP2C9 and CYP2C19 genotypes do not influence methadone plasma levels. Lower peak and trough plasma levels of methadone and higher peak-to-trough ratios were measured in patients considered as nonresponders [median (R,S)-methadone trough plasma levels of 183 and 249 ng . kg/mL . mg (P = .0004) and median peak-to-trough ratios of 1.82 and 1.58 for high-dose nonresponders and high-dose responders, respectively (P = .0003)]. CONCLUSION: Although CYP2B6 influences (S)-methadone plasma levels, given that only (R)-methadone contributes to the opioid effect of this drug, a major influence of CYP2B6 genotype on response to treatment is unlikely and has not been shown in this study. Lower plasma levels of methadone in nonresponders, suggesting a higher clearance, and higher peak-to-trough ratios, suggesting a shorter elimination half-life, are in agreement with the usual clinical measures taken for such patients, which are to increase methadone dosages and to split the daily dose into several intakes.
Resumo:
The ends of prestressed concrete beams under expansion joints are often exposed to moisture and chlorides. Left unprotected, the moisture and chlorides come in contact with the ends of the prestressing strands and/or the mild reinforcing, resulting in corrosion. Once deterioration begins, it progresses unless some process is employed to address it. Deterioration can lead to loss of bearing area and therefore a reduction in bridge capacity. Previous research has looked into the use of concrete coatings (silanes, epoxies, fiber-reinforced polymers, etc.) for protecting prestressed concrete beam ends but found that little to no laboratory research has been done related to the performance of these coatings in this specific type of application. The Iowa Department of Transportation (DOT) currently specifies coating the ends of exposed prestressed concrete beams with Sikagard 62 (a high-build, protective, solvent-free, epoxy coating) at the precast plant prior to installation on the bridge. However, no physical testing of Sikagard 62 in this application has been completed. In addition, the Iowa DOT continues to see deterioration in the prestressed concrete beam ends, even those treated with Sikagard 62. The goals of this project were to evaluate the performance of the Iowa DOT-specified beam-end coating as well as other concrete coating alternatives based on the American Association of State Highway and Transportation Officials (AASHTO) T259-80 chloride ion penetration test and to test their performance on in-service bridges throughout the duration of the project. In addition, alternative beam-end forming details were developed and evaluated for their potential to mitigate and/or eliminate the deterioration caused by corrosion of the prestressing strands on prestressed concrete beam ends used in bridges with expansion joints. The alternative beam-end details consisted of individual strand blockouts, an individual blockout for a cluster of strands, dual blockouts for two clusters of strands, and drilling out the strands after they are flush cut. The goal of all of the forming alternatives was to offset the ends of the prestressing strands from the end face of the beam and then cover them with a grout/concrete layer, thereby limiting or eliminating their exposure to moisture and chlorides.
Resumo:
OBJECTIVE: Pseudohypoaldosteronism type I (PHA1) is a rare inborn disease causing severe salt loss. Mutations in the three coding genes of the epithelial sodium channel (ENaC) are responsible for the systemic autosomal recessive form. So far, no phenotype has been reported in heterozygous carriers. PATIENTS: A consanguineous family from Somalia giving birth to a neonate suffering from PHA1 was studied including clinical and hormonal characteristics of the family, mutational analysis of the SCNN1A, SCNN1B, SCNN1G and CFTR genes and in vitro analysis of the functional consequences of a mutant ENaC channel. RESULTS: CFTR mutations have been excluded. SCNN1A gene analysis revealed a novel homozygous c.1684T > C mutation resulting in a S562P substitution in the alphaENaC protein of the patient. Functional analysis showed a significantly reduced S562P channel function compared to ENaC wild type. Protein synthesis and channel subunit assembly were not altered by the S562P mutation. Co-expression of mutant and wild-type channels revealed a dominant negative effect. In heterozygote carriers, sweat sodium and chloride concentrations were increased without additional hormonal or clinical phenotypes. CONCLUSION: Hence, the novel mutation S562P is causing systemic PHA1 in the homozygous state. A thorough clinical investigation of the heterozygote SCNN1A mutation carriers revealed increased sweat sodium and chloride levels consistent with a dominant effect of the mutant S562P allele. Whether this subclinical phenotype is of any consequence for the otherwise asymptomatic heterozygous carriers has to be elucidated.