966 resultados para arthropod pests


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Citrus canker is a disease of citrus and closely related species, caused by the bacterium Xanthomonas citri subsp. citri. This disease, previously exotic to Australia, was detected on a single farm [infested premise-1, (IP1). IP is the terminology used in official biosecurity protocols to describe a locality at which an exotic plant pest has been confirmed or is presumed to exist. IP are numbered sequentially as they are detected] in Emerald, Queensland in July 2004. During the following 10 months the disease was subsequently detected on two other farms (IP2 and IP3) within the same area and studies indicated the disease first occurred on IP1 and spread to IP2 and IP3. The oldest, naturally infected plant tissue observed on any of these farms indicated the disease was present on IP1 for several months before detection and established on IP2 and IP3 during the second quarter (i.e. autumn) 2004. Transect studies on some IP1 blocks showed disease incidences ranged between 52 and 100% (trees infected). This contrasted to very low disease incidence, less than 4% of trees within a block, on IP2 and IP3. The mechanisms proposed for disease spread within blocks include weather-assisted dispersal of the bacterium (e.g. wind-driven rain) and movement of contaminated farm equipment, in particular by pivot irrigator towers via mechanical damage in combination with abundant water. Spread between blocks on IP2 was attributed to movement of contaminated farm equipment and/or people. Epidemiology results suggest: (i) successive surveillance rounds increase the likelihood of disease detection; (ii) surveillance sensitivity is affected by tree size; and (iii) individual destruction zones (for the purpose of eradication) could be determined using disease incidence and severity data rather than a predefined set area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract The enemy release hypothesis predicts that native herbivores will either prefer or cause more damage to native than introduced plant species. We tested this using preference and performance experiments in the laboratory and surveys of leaf damage caused by the magpie moth Nyctemera amica on a co-occuring native and introduced species of fireweed (Senecio) in eastern Australia. In the laboratory, ovipositing females and feeding larvae preferred the native S. pinnatifolius over the introduced S. madagascariensis. Larvae performed equally well on foliage of S. pinnatifolius and S. madagascariensis: pupal weights did not differ between insects reared on the two species, but growth rates were significantly faster on S. pinnatifolius. In the field, foliage damage was significantly greater on native S. pinnatifolius than introduced S. madagascariensis. These results support the enemy release hypothesis, and suggest that the failure of native consumers to switch to introduced species contributes to their invasive success. Both plant species experienced reduced, rather than increased, levels of herbivory when growing in mixed populations, as opposed to pure stands in the field; thus, there was no evidence that apparent competition occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim To measure latitude-related body size variation in field-collected Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) individuals and to conduct common-garden experiments to determine whether such variation is due to phenotypic plasticity or local adaptation. Location Four collection sites from the east coast of Australia were selected for our present field collections: Canberra (latitude 35°19' S), Bangalow (latitude 28°43' S), Beerburrum (latitude 26°58' S) and Lowmead (latitude 24°29' S). Museum specimens collected over the past 100 years and covering the same geographical area as the present field collections came from one state, one national and one private collection. Methods Body size (pronotum width) was measured for 118 field-collected beetles and 302 specimens from collections. We then reared larvae from the latitudinal extremes (Canberra and Lowmead) to determine whether the size cline was the result of phenotypic plasticity or evolved differences (= local adaptation) between sites. Results Beetles decreased in size with increasing latitude, representing a converse Bergmann cline. A decrease in developmental temperature produced larger adults for both Lowmead (low latitude) and Canberra (high latitude) individuals, and those from Lowmead were larger than those from Canberra when reared under identical conditions. Main conclusions The converse Bergmann cline in P. atomaria is likely to be the result of local adaptation to season length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taro (Colocasia esculenta L. Schott) is an important crop worldwide but is of particular significance in many Pacific Island countries where it forms part of the staple diet and serves as an export commodity. Escalating pest and disease problems are jeopardizing taro production with serious implications to food security and trade. Biotechnological approaches to addressing pest and disease problems, such as somatic embryogenesis and transgenesis, are potentially viable options. However, despite biotechnological advancements in higher profile agronomic crops, such progress in relation to Colocasia esculenta var. esculenta has been slow. This paper reviews taro biology, highlights the cultural and economic significance of taro in Pacific Island countries and discusses the progress made towards the molecular breeding of this important crop to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most tropical fruit flies only lay into mature fruit, but a small number can also oviposit into unripe fruit. Little is known about the link between adult oviposition preference and offspring performance in such situations. In this study we examine the influence of different ripening stages of two mango Mangifera indica L. (Anacardiaceae) varieties on the preference and performance of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a fly known to be able to develop in unripe fruit. Work was carried out as a series of laboratory-based choice and no-choice oviposition experiments and larval growth trials. In oviposition choice trials, female B. dorsalis demonstrated a preference for ripe fruit of mango variety Namdorkmai over variety Oakrong, but generally the dependent variable most influencing oviposition results was fruit ripening stage. Ripe and fully-ripe mangoes were most preferred for oviposition by B. dorsalis. In contrast, unripe mango was infrequently used by ovipositing females, particularly in choice trials. Consistent with the results of oviposition preference, ripe and fully-ripe mangoes were also best for offspring survival, with a higher percentage of larval survival to pupation and shorter development times in comparison to unripe mango. Changes in Total Soluble Solids, TSS, and skin toughness correlate with changing host use across the ripening stages. Regardless of the mango variety or ripeness stage, B. dorsalis had difficulty penetrating the pericarp of our experimental fruit. Larval survival was also often poor. We discuss the possibility that there may be differences in the ability of laboratory and wild flies to penetrate fruit for oviposition, or that in the field flies more regularly utilize natural fruit wounds as oviposition sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opiine wasps (Hymenoptera: Braconidae: Opiinae) are parasitoids of dacine fruit flies (Diptera: Tephritidae: Dacinae), the primary horticultural pests of Australia and the South Pacific. Effective use of opiines for biological control of fruit flies is limited by poor taxonomy and identification difficulties. To overcome these problems, this thesis had two aims: (i) to carry out traditional taxonomic research on the fruit fly infesting opine braconids of Australia and the South Pacific; and (ii) to transfer the results of the taxonomic research into user friendly diagnostic tools. Curated wasp material was borrowed from all major Australian museum collections holding specimens. This was supplemented by a large body of material gathered as part of a major fruit fly project in Papua New Guinea: nearly 4000 specimens were examined and identified. Each wasp species was illustrated using traditional scientific drawings, full colour photomicroscopy and scanning electron microscopy. An electronic identification key was developed using Lucid software and diagnostic images were loaded on the web-based Pest and Diseases Image Library (PaDIL). A taxonomic synopsis and distribution and host records for each of the 15 species of dacine-parasitising opiine braconids found in the South Pacific is presented. Biosteres illusorius Fischer (1971) was formally transferred to the genus Fopius and a new species, Fopius ferrari Carmichael and Wharton (2005), was described. Other species dealt with were Diachasmimorpha hageni (Fullaway, 1952), D. kraussii (Fullaway, 1951), D. longicaudata (Ashmead, 1905), D. tryoni (Cameron, 1911), Fopius arisanus (Sonan, 1932), F. deeralensis (Fullaway, 1950), F. schlingeri Wharton (1999), Opius froggatti Fullaway (195), Psyttalia fijiensis (Fullaway, 1936), P. muesebecki (Fischer, 1963), P. novaguineensis (Szépliget, 1900i) and Utetes perkinsi (Fullaway, 1950). This taxonomic component of the thesis has been formally published in the scientific literature. An interactive diagnostics package (“OpiineID”) was developed, the centre of which is a Lucid based multi-access key. Because the diagnostics package is computer based, without the space limitations of the journal publication, there is no pictorial limit in OpiineID and so it is comprehensively illustrated with SEM photographs, full colour photographs, line drawings and fully rendered illustrations. The identification key is only one small component of OpiineID and the key is supported by fact sheets with morphological descriptions, host associations, geographical information and images. Each species contained within the OpiineID package has also been uploaded onto the PaDIL website (www.padil.gov.au). Because the identification of fruit fly parasitoids is largely of concern to fruit fly workers, rather than braconid specialists, this thesis deals directly with an area of growing importance to many areas of pure and applied biology; the nexus between taxonomy and diagnostics. The Discussion chapter focuses on this area, particularly the opportunities offered by new communication and information tools as new ways delivering the outputs of taxonomic science.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract A field survey for natural enemies of Paropsis atomaria was conducted at two south-eastern Queensland Eucalyptus cloeziana plantation sites during 2004–2005. Primary egg and larval parasitoids and associated hyperparasitoids were identified to genus or species, and parasitism rates were determined throughout the season. Predators were identified to family level but their impact was not quantified. P. atomaria adults were also examined as potential hosts for parasitic mites and nematodes. An undescribed species of Neopolycystus (Pteromalidae) was the major primary egg parasitoid species reared from egg batches, parasitising half of all egg batches collected. Three hyperparasitoid species (Baeoanusia albifunicle (Encyrtidae), Neblatticida sp. (Encyrtidae) and Aphaneromella sp. (Platygasteridae) were present, representing around one-quarter to one-third of all emergent wasps; this is the first host association record for Neopolycystus–B. albifunicle. In contrast to populations of P. atomaria from the Australian Capital Territory, primary larval parasitism was very low, around 1%, and attributable only to the tachinid flies Anagonia sp. and Paropsivora sp. However, the presence of the sit-and-wait larval hyperparasitoid, Perilampus sp. (Perilampidae) was high, emerging from around 17% of tachinid pupae, with planidia infesting a further 40% of unparasitised hosts. Three species of podapolipid mites parasitised sexually mature P. atomaria adults, while no nematodes were found in this study. Spiders were the most common predators and their abundance was positively correlated with P. atomaria adult and egg numbers. Although natural enemy species composition was identical between our two study sites, significant differences in abundance and frequency were found between sites

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5–6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International market access for fresh commodities is regulated by international accepted phytosanitary guidelines, the objectives of which are to reduce the biosecurity risk of plant pest and disease movement. Papua New Guinea (PNG) has identified banana as a potential export crop and to help meet international market access requirements, this thesis provides information for the development of a pest risk analysis (PRA) for PNG banana fruit. The PRA is a three step process which first identifies the pests associated with a particular commodity or pathway, then assesses the risk associated with those pests, and finally identifies risk management options for those pests if required. As the first step of the PRA process, I collated a definitive list on the organisms associated with the banana plant in PNG using formal literature, structured interviews with local experts, grey literature and unpublished file material held in PNG field research stations. I identified 112 organisms (invertebrates, vertebrate, pathogens and weeds) associated with banana in PNG, but only 14 of these were reported as commonly requiring management. For these 14 I present detailed information summaries on their known biology and pest impact. A major finding of the review was that of the 14 identified key pests, some research information occurs for 13. The single exception for which information was found to be lacking was Bactrocera musae (Tryon), the banana fly. The lack of information for this widely reported ‘major pest on PNG bananas’ would hinder the development of a PNG banana fruit PRA. For this reason the remainder of the thesis focused on this organism, particularly with respect to generation of information required by the PRA process. Utilising an existing, but previously unanalysed fruit fly trapping database for PNG, I carried out a Geographic Information System analysis of the distribution and abundance of banana in four major regions of PNG. This information is required for a PRA to determine if banana fruit grown in different parts of the country are at different risks from the fly. Results showed that the fly was widespread in all cropping regions and that temperature and rainfall were not significantly correlated with banana fly abundance. Abundance of the fly was significantly correlated (albeit weakly) with host availability. The same analysis was done with four other PNG pest fruit flies and their responses to the environmental factors differed to banana fly and each other. This implies that subsequent PRA analyses for other PNG fresh commodities will need to investigate the risk of each of these flies independently. To quantify the damage to banana fruit caused by banana fly in PNG, local surveys and one national survey of banana fruit infestation were carried out. Contrary to expectations, infestation was found to be very low, particularly in the widely grown commercial cultivar, Cavendish. Infestation of Cavendish fingers was only 0.41% in a structured, national survey of over 2 700 banana fingers. Follow up laboratory studies showed that fingers of Cavendish, and another commercial variety Lady-finger, are very poor hosts for B. musae, with very low host selection rates by female flies and very poor immature survival. An analysis of a recent (within last decade) incursion of B. musae into the Gazelle Peninsula of East New Britain Province, PNG, provided the final set of B. musae data. Surveys of the fly on the peninsular showed that establishment and spread of the fly in the novel environment was very rapid and thus the fly should be regarded as being of high biosecurity concern, at least in tropical areas. Supporting the earlier impact studies, however, banana fly has not become a significant banana fruit problem on the Gazelle, despite bananas being the primary starch staple of the region. The results of the research chapters are combined in the final Discussion in the form of a B. musae focused PRA for PNG banana fruit. Putting the thesis in a broader context, the Discussion also deals with the apparent discrepancy between high local abundance of banana fly and very low infestation rates. This discussion focuses on host utilisation patterns of specialist herbivores and suggests that local pest abundance, as determined by trapping or monitoring, need not be good surrogate for crop damage, despite this linkage being implicit in a number of international phytosanitary protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Greyback canegrubs cost the Australian sugarcane industry around $13 million per annum in damage and control. A novel and cost effective biocontrol bacterium could play an important role in the integrated pest management program currently in place to reduce damage and control associated costs. During the course of this project, terminal restriction fragment length polymorphism (TRFLP), 16-S rDNA cloning, suppressive subtractive hybridisation (SSH) and entomopathogen-specific PCR screening were used to investigate the little studied canegrub-associated microflora in an attempt to discover novel pathogens from putatively-diseased specimens. Microflora associated with these soil-dwelling insects was found to be both highly diverse and divergent between individual specimens. Dominant members detected in live specimens were predominantly from taxa of known insect symbionts while dominant sequences amplified from dead grubs were homologous to putativelysaprophytic bacteria and bacteria able to grow during refrigeration. A number of entomopathogenic bacteria were identified such as Photorhabdus luminescens and Pseudomonas fluorescens. Dead canegrubs prior to decomposition need to be analysed if these bacteria are to be isolated. Novel strategies to enrich putative pathogen-associated sequences (SSH and PCR screening) were shown to be promising approaches for pathogen discovery and the investigation of canegrubsassociated microflora. However, due to inter- and intra-grub-associated community diversity, dead grub decomposition and PCR-specific methodological limitations (PCR bias, primer specificity, BLAST database restrictions, 16-S gene copy number and heterogeneity), recommendations have been made to improve the efficiency of such techniques. Improved specimen collection procedures and utilisation of emerging high-throughput sequencing technologies may be required to examine these complex communities in more detail. This is the first study to perform a whole-grub analysis and comparison of greyback canegrub-associated microbial communities. This work also describes the development of a novel V3-PCR based SSH technique. This was the first SSH technique to use V3-PCR products as a starting material and specifically compare bacterial species present in a complex community.