961 resultados para approximate calculation of sums
Resumo:
A plan to construct a canal through the Kra Isthmus in Southern Thailand has been proposed many times since the 17th century. The proposed canal would become an alternative route to the over-crowded Straits of Malacca. In this paper, we attempt to utilize a Geographical Information System (GIS) to calculate the realistic distances between ports that would be affected by the Kra Canal and to estimate the economic impact of the canal using a simulation model based on spatial economics. We find that China, India, Japan, and Europe gain the most from the construction of the canal, besides Thailand. On the other hand, the routes through the Straits of Malacca are largely beneficial to Malaysia, Brunei, and Indonesia, besides Singapore. Thus, it is beneficial for all ASEAN member countries that the Kra Canal and the Straits of Malacca coexist and complement one another.
Resumo:
The accurate computation of radioactive opacities is needed in several research fields such as astrophysics, magnetic fusion or ICF target physics analysis, in which the radiation transport is an important feature to determine in detail. Radiation transport plays an important role in the transport of energy in dense plasma and it is strongly influenced by the variation of plasma opacity with density and temperature, as well as, photon energy. In this work we present some new features of the opacity code ATMED [1]. This code has been designed to compute the spectral radioactive opacity as well as the Rosseland and Planck means for single element and mixture plasmas. The model presented is fast, stable and reasonably accurate into its range of application and it can be a useful tool to simulate ICF experiments in plasma laboratory.
Resumo:
This paper presents some of the results of a method to determine the main reliability functions of concentrator solar cells. High concentrator GaAs single junction solar cells have been tested in an Accelerated Life Test. The method can be directly applied to multi-junction solar cells. The main conclusions of this test carried out show that these solar cells are robust devices with a very low probability of failure caused by degradation during their operation life (more than 30 years). The evaluation of the probability operation function (i.e. the reliability function R(t)) is obtained for two nominal operation conditions of these cells, namely simulated concentration ratios of 700 and 1050 suns. Preliminary determination of the Mean Time to Failure indicates a value much higher than the intended operation life time of the concentrator cells.
Resumo:
We study the notion of approximate entropy within the framework of network theory. Approximate entropy is an uncertainty measure originally proposed in the context of dynamical systems and time series. We first define a purely structural entropy obtained by computing the approximate entropy of the so-called slide sequence. This is a surrogate of the degree sequence and it is suggested by the frequency partition of a graph. We examine this quantity for standard scale-free and Erdös-Rényi networks. By using classical results of Pincus, we show that our entropy measure often converges with network size to a certain binary Shannon entropy. As a second step, with specific attention to networks generated by dynamical processes, we investigate approximate entropy of horizontal visibility graphs. Visibility graphs allow us to naturally associate with a network the notion of temporal correlations, therefore providing the measure a dynamical garment. We show that approximate entropy distinguishes visibility graphs generated by processes with different complexity. The result probes to a greater extent these networks for the study of dynamical systems. Applications to certain biological data arising in cancer genomics are finally considered in the light of both approaches.