989 resultados para antimicrobial activities


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four novel oxapenem compounds (i.e., AM-112, AM-113, AM-114, and AM-115) were investigated for their β-lactamase inhibitory activity against a panel of isolated class A, C, and D enzymes, which included expanded-spectrum β-lactamase enzymes (ESBLs). The oxapenems were potent β-lactamase inhibitors. Activity varied within the group, with AM-113 and AM-114 proving to be the most active compounds. The 50% inhibitory concentrations for these agents were up to 100,000-fold lower than that of clavulanic acid against class C and D enzymes. As a group, the oxapenems were more potent than clavulanic acid against enzymes from all classes. The ability of these compounds to protect ceftazidime from hydrolysis by β-lactamase-producing strains was evaluated by MIC tests that combined ceftazidime and each oxapenem in a 1:1 or 2:1 ratio. The oxapenems markedly reduced the MICs for ceftazidime against class C hyperproducing strains and strains producing TEM- and SHV-derived ESBLs. There was little difference between the activity of 1:1 and 2:1 combinations of ceftazidime and oxapenem. The oxapenems failed to enhance the activity of ceftazidime against derepressed AmpC-producing Pseudomonas aeruginosa strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AM-112[1′R,5R,6R)-3-(4-amino-1,1-dimethyl-butyl)-6-(1′- hydroxyethyl)oxapenem-3-carboxylatel is a novel oxapenem compound which possesses potent β-lactamase-inhibitory properties. Fifty-percent inhibitory concentrations (IC50s) of AM-112 for class A enzymes were between 0.16 and 2.24 μM for three enzymes, compared to IC50s of 0.008 to 0.12 μM for clavulanic acid. Against class C and class D enzymes, however, the activity of AM-112 was between 1,000- and 100,000-fold greater than that of clavulanic acid. AM-112 had affinity for the penicillin-binding proteins (PBPs) of Escherichia coli DC0, with PBP2 being inhibited by the lowest concentration of AM-112 tested, 0.1 μg/ml. Ceftazidime was combined with AM-112 at 1:1 and 2:1 ratios in MIC determination studies against a panel of β-lactamase-producing organisms. These studies demonstrated that AM-112 was effective at protecting ceftazidime against extended-spectrum β-lactamase-producing strains and derepressed class C enzyme producers, reducing ceftazidime MICs by 16- and 2,048-fold. Similar results were obtained when AM-112 was combined with ceftriaxone, cefoperazone, or cefepime in a 1:2 ratio. Protection of ceftazidime with AM-112 was maintained against Enterobacter cloacae P99 and Klebsiella pneumoniae SHV-5 in a murine intraperitoneal sepsis model. The 50% effective dose of ceftazidime against E. cloacae P99 and K. pneumoniae SHV-5 was reduced from >100 and 160 mg/kg of body weight to 2 and 33.6 mg/kg, respectively, when it was combined with AM-112 at a 1:1 ratio. AM-112 demonstrates potential as a new β-lactamase inhibitor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bacterial pigment prodigiosin has various biological activities; it is, for instance, an effective antimicrobial. Here, we investigate the primary site targeted by prodigiosin, using the cells of microbial pathogens of humans as model systems: Candida albicans, Escherichia coli, Staphylococcus aureus. Inhibitory concentrations of prodigiosin; leakage of intracellular K+ ions, amino acids, proteins and sugars; impacts on activities of proteases, catalases and oxidases; and changes in surface appearance of pathogen cells were determined. Prodigiosin was highly inhibitory (30% growth rate reduction of C. albicans, E. coli, S. aureus at 0.3, 100 and 0.18 μg ml−1, respectively); caused leakage of intracellular substances (most severe in S. aureus); was highly inhibitory to each enzyme; and caused changes to S. aureus indicative of cell-surface damage. Collectively, these findings suggest that prodigiosin, log Poctanol–water 5.16, is not a toxin but is a hydrophobic stressor able to disrupt the plasma membrane via a chaotropicity-mediated mode-of-action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the greatest sources of biologically active compounds is natural products. Often these compounds serve as platforms for the design and development of novel drugs and therapeutics. The overwhelming amount of genomic information acquired in recent years has revealed that ribosomally synthesized and post-translationally modified natural products are much more widespread than originally anticipated. Identified in nearly all forms of life, these natural products display incredible structural diversity and possess a wide range of biological functions that include antimicrobial, antiviral, anti-inflammatory, antitumor, and antiallodynic activities. The unique pathways taken to biosynthesize these compounds offer exciting opportunities for the bioengineering of these complex molecules. The studies described herein focus on both the mode of action and biosynthesis of antimicrobial peptides. In Chapter 2, it is demonstrated that haloduracin, a recently discovered two-peptide lantibiotic, possesses nanomolar antimicrobial activity against a panel of bacteria strains. The potency of haloduracin rivals that of nisin, an economically and therapeutically relevant lantibiotic, which can be attributed to a similar dual mode of action. Moreover, it was demonstrated that this lantibiotic of alkaliphile origin has better stability at physiological pH than nisin. The molecular target of haloduracin was identified as the cell wall peptidoglycan precursor lipid II. Through the in vitro biosynthesis of haloduracin, several analogues of Halα were prepared and evaluated for their ability to inhibit peptidoglycan biosynthesis as well as bacterial cell growth. In an effort to overcome the limitations of in vitro biosynthesis strategies, a novel strategy was developed resulting in a constitutively active lantibiotic synthetase enzyme. This methodology, described in Chapter 3, enabled the production of fully-modified lacticin 481 products with proteinogenic and non-proteinogenic amino acid substitutions. A number of lacticin 481 analogues were prepared and their antimicrobial activity and ability to bind lipid II was assessed. Moreover, site-directed mutagenesis of the constitutively active synthetase resulted in a kinase-like enzyme with the ability to phosphorylate a number of peptide substrates. The hunt for a lantibiotic synthetase enzyme responsible for installing the presumed dehydro amino acids and a thioether ring in the natural product sublancin, led to the identification and characterization of a unique post-translational modification. The studies described in Chapter 4, demonstrate that sublancin is not a lantibiotic, but rather an unusual S-linked glycopeptide. Its structure was revised based on extensive chemical, biochemical, and spectroscopic characterization. In addition to structural investigation, bioinformatic analysis of the sublancin gene cluster led to the identification of an S-glycosyltransferase predicted to be responsible for the post-translational modification of the sublancin precursor peptide. The unprecedented glycosyltransferase was reconstituted in vitro and demonstrated remarkable substrate promiscuity for both the NDP-sugar co-substrate as well as the precursor peptide itself. An in vitro method was developed for the production of sublancin and analogues which were subsequently evaluated in bioactivity assays. Finally, a number of putative biosynthetic gene clusters were identified that appear to harbor the necessary genes for production of an S-glycopeptide. An additional S-glycosyltransferase with more favorable intrinsic properties including better expression, stability, and solubility was reconstituted in vitro and demonstrated robust catalytic abilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sponges are the most primitive of the multicellular, These organisms don’t have any mechanical defense system, so their early appearance in evolution has given them a lot of time for the development of advanced secondary metabolites as chemical defense system. Sponges have the potential to provide drugs from chemical components against diseases. In this investigation the sponge samples, which it is Ircina spp., were collected at depth of 15- 24 meter, from locations on the coastline of Island Kish in Persian Gulf of Iran. For identifying natural components, methanolic and diethyletter were used as extraction solvents, after removal of the solvents, the GC/MS spectra of the fraction were obtained. Then in vitro cytotoxic, antimicrobial and antifungal were identified. In vitro cytotoxity screening, by XTT assay, against KB/ C359 and HUT-56/ C365 cell line, was conducted in this study in 1 - 544 μg/ml. IC54 for winter diethyletter extract was 325 μg/ml, winter methanolic extract was 364 μg/ml, IC54 for summer diethyletter extract was 544 μg/ml, and summer methanolic extract was 454 μg/ml in HUT-56. IC54 for winter diethyletter extract was 454 μg/ml, winter methanolic extract was 444 μg/ml, IC54 for summer diethyletter extract was 344 μg/ml, and summer methanolic extract was 424 μg/ml in KB. In vitro antimicrobial activity by Broth Dilution Methods against clinical gram-positives and gram negatives (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis). The results conducted that the MIC values of winter diethyletter extract for Escherichia coli 24mg/ml, the MIC values of winter diethyletter extract for Escherichia coli 24mg/ml, the MIC and MBC values of winter diethyletter extract for Staphylococcus aureus was 2mg/ml and 24mg/ml. The MIC and MBC values of winter diethyletter extract for Bacillus subtilis was 1.5 mg/ml and 2mg/ml. In vitro antifungal activity by Broth Dilution Methods against clinical pathogens; Candida albicans and Aspergillus fumigatus. The results conducted that the aqueous extracts didn’t have any antifungal activities on pathogens, the MFC of the summer and winter diethyletter extract was 30 mg/ml and 2 mg/ml A. fumigates, the summer and winter methanolic extract was 0722 mg/ml and 2 mg/ml A. fumigates, the summer and winter methanolic was 4/75mg/ml, MFC 5 mg/ml on C. albicans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neglected agricultural products (NAPs) are defined as discarded material in agricultural production. Corn cobs are a major waste of agriculture maize. Here, a methanolic extract from corn cobs (MEC) was obtained. MEC contains phenolic compounds, protein, carbohydrates (1.4:0.001:0.001). We evaluated the in vitro and in vivo antioxidant potential of MEC. Furthermore, its antiproliferative property against tumor cells was assessed through MTT assays and proteins related to apoptosis in tumor cells were examined by western blot. MEC showed no hydroxyl radical scavenger capacity, but it showed antioxidant activity in Total Antioxidant Capacity and DPPH scavenger ability assays. MEC showed higher Reducing Power than ascorbic acid and exhibited high Superoxide Scavenging activity. In tumor cell culture, MEC increased catalase, metallothionein and superoxide dismutase expression in accordance with the antioxidant tests. In vivo antioxidant test, MEC restored SOD and CAT, decreased malondialdehyde activities and showed high Trolox Equivalent Antioxidant Capacity in animals treated with CCl4. Furthermore, MEC decreased HeLa cells viability by apoptosis due an increase of Bax/Bcl-2 ratio, caspase 3 active. Protein kinase C expression increased was also detected in treated tumor cells. Thus, our findings pointed out the biotechnological potential of corn cobs as a source of molecules with pharmacological activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practice of physical activities contributes to reducing the risk of chronic diseases and improves sleep patterns in the elderly. This research aimed to investigate the association between insomnia symptoms and daytime nap and the participation in physical leisure activities in elderly community residents. Data from the Studies Network of the Fragility in Brazilian Elderly (Campinas site), were used. Information from 689 elderly was analyzed, regarding sociodemographic characterization, physical leisure activity, occurrence of daytime napping and its duration, symptoms of insomnia and use of sleep medication. A significant association was found between the practice of walking and the daytime nap of short duration. Studies indicate that a short nap can benefit the quality of sleep and health of the elderly. Therefore, promoting the practice of walking can be a nursing intervention that favors the sleep patterns of the elderly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to perform an in vitro analysis of the antimicrobial and antiproliferative potential of an extract from Anadenanthera colubrina (Vell.) Brenan (angico) and chemically characterize the crude extract. Antimicrobial action was evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration, and the inhibition of formation to oral biofilm. Cell morphology was determined through scanning electron microscopy (SEM). Six strains of tumor cells were used for the determination of antiproliferative potential. The extract demonstrated strong antifungal activity against Candida albicans ATCC 18804 (MIC = 0.031 mg/mL), with similar activity found regarding the ethyl acetate fraction. The extract and active fraction also demonstrated the capacity to inhibit the formation of Candida albicans to oral biofilm after 48 hours, with median values equal to or greater than the control group, but the difference did not achieve statistical significance (P > 0.05). SEM revealed alterations in the cell morphology of the yeast. Regarding antiproliferative activity, the extract demonstrated cytostatic potential in all strains tested. The present findings suggest strong antifungal potential for Anadenanthera colubrina (Vell.) Brenan as well as a tendency toward diminishing the growth of human tumor cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The essential oil from the leaves of Ocimum kilimandscharicum (EOOK), collected in Dourados-MS, was investigated for anticancer, anti-inflammatory and antioxidant activity and chemical composition. The essential oil was extracted by hydrodistillation, and the chemical composition was performed by gas chromatography-mass spectrometry. The essential oil was evaluated for free radical-scavenging activity using the DPPH assay and was tested in an anticancer assay against ten human cancer cell lines. The response parameter (GI50) was calculated for the cell lines tested. The anti-inflammatory activity was evaluated using carrageenan-induced pleurisy in mice. The chemical composition showed 45 components with a predominance of monoterpenes, such as camphor (51.81%), 1,8 cineole (20.13%) and limonene (11.23%). The EOOK exhibited potent free radical-scavenging activity by the DPPH assay with a GI50 of 8.31 μg/ml. The major constituents, pure camphor (IC50=12.56 μg/ml) and mixture of the limonene: 1, 8 cineole (IC50=23.25 μg/ml) displayed a potent activity. The oral administration of EOOK (at 30 and 100 mg kg(-1)), as well as the pure camphor or a mixture of 1,8 cineole with limonene, significantly inhibited the carrageenan (Cg) induced pleurisy, reducing the migration of total leukocytes in mice by 82 ± 4% (30 mg kg(-1) of EOOK), 95 ± 4% (100 mg kg(-1) of EOOK), 83 ± 9% (camphor) and 80 ± 5% (mixture of 1,8 cineole:limonene 1:1). In vitro cytotoxicity screening against a human ovarian cancer cell line displayed high selectivity and potent anticancer activity with GI50=31.90 mg ml(-1). This work describes the anti-inflammatory, anticancer and antioxidant effects of EOOK for the first time. The essential oil exhibited marked anti-inflammatory, antioxidant and anticancer effects, an effect that can be attributed the presence of majorital compounds, and the response profiles from chemical composition differed from other oils collected in different locales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI50) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI50 values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug-resistant microbial infections represent an exponentially growing problem affecting communities worldwide. Photodynamic therapy is a promising treatment based on the combination of light, oxygen, and a photosensitizer that leads to reactive oxygen species production, such as superoxide (type I mechanism) and singlet oxygen (type II mechanism) that cause massive oxidative damage and consequently the host cell death. Indigofera genus has gained considerable interest due its mutagenic, cytotoxic, and genotoxic activity. Therefore, this study was undertaken to investigate the effect of crude extracts, alkaloidal fraction, and isolated substance derived from Indigofera truxillensis in photodynamic antimicrobial chemotherapy on the viability of bacteria and yeast and evaluation of mechanisms involved. Our results showed that all samples resulted in microbial photoactivation in subinhibitory concentration, with indigo alkaloid presenting a predominant photodynamic action through type I mechanism. The use of CaCl2 and MgCl2 as cell permeabilizing additives also increased gram-negative bacteria susceptibility to indigo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ofloxacin is an antimicrobial agent frequently found in significant concentrations in wastewater and surface water. Its continuous introduction into the environment is a potential risk to non-target organisms or to human health. In this study, ofloxacin degradation by UV/TiO2 and UV/TiO2/H2O2, antimicrobial activity (E. coli) of samples subjected to these processes, and by-products formed were evaluated. For UV/TiO2, the degradation efficiency was 89.3% in 60 min of reaction when 128 mg L(-1) TiO2 were used. The addition of 1.68 mmol L(-1) hydrogen peroxide increased degradation to 97.8%. For UV/TiO2, increasing the catalyst concentration from 4 to 128 mg L(-1) led to an increase in degradation efficiency. For both processes, the antimicrobial activity was considerably reduced throughout the reaction time. The structures of two by-products are presented: m/z 291 (9-fluoro-3-methyl-10-(methyleneamino)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid) and m/z 157 ((Z)-2-formyl-3-((2-oxoethyl)imino)propanoic acid).