949 resultados para antifungal drug resistance
Resumo:
The effectiveness of antiviral treatments of chronic hepatitis B has been poorly studied in Brazil. Here, hepatitis B virus (HBV) DNA positivity, drug resistance mutations and their association with HBV genotypes were evaluated in chronically HBV-infected patients under different drug regimens in Brazil. The study involved 129 patients under interferon or nucleos(t)ide analogue therapy for a median treatment time of 12 months. One hundred and five (81%) of these patients were treated with lamivudine (LAM), either in monotherapy or in combination with newer drugs, such as entecavir (ETV) or tenofovir (TDF). High (37.5-100%) rates of HBV DNA positivity were observed with all but one drug regimen (LAM + ETV). However, patients that were treated with ETV alone, TDF alone or with LAM combination therapies had a mean viral load that was 3-4 log lower than patients treated with LAM monotherapy. Of the patients treated with LAM, 47% developed resistance mutations. HBV genotypes A (59.1%), D (30.3%) and F (9.1%) were found. There was no association between the presence of LAM resistance mutations and genotypes, HBeAg status or treatment duration. Nevertheless, the rtM204V mutation was observed more frequently (12/13, 92%) in genotype A than in the others (p = 0.023). Six out of nine isolates that contained the rtM204I mutation belonged to genotype D and half of them displayed a single mutation. Genotype D isolates with the rtM204V variant preferentially displayed a triple mutation, while genotype A preferentially displayed a double mutation (p = 0.04).
Resumo:
Determining the prevalence and type of antiretroviral (ARV) resistance among ARV-naïve individuals is important to assess the potential responses of these individuals to first-line regimens. The prevalence of primary resistance and the occurrence of recent infections among individuals with human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) were identified among recently diagnosed patients at five sexually transmitted disease/AIDS testing and counselling centres in the metropolitan region of Recife (RMR), Pernambuco, Brazil, between 2007-2009. One-hundred and eight samples were analysed using the Calypte® BED assay. Males predominated (56%), as did patients aged 31-50 years. Twenty-three percent presented evidence of a recent HIV infection. The median CD4+ T lymphocyte count was 408 cells/mm³ and the median viral load was 3.683 copies/mL. The prevalence of primary resistance was 4.6% (confidence interval 95% = 1-8.2%) based on criteria that excluded common polymorphisms in accordance with the surveillance drug resistance mutation criteria. The prevalence of resistance to non-nucleoside reverse transcriptase, nucleoside/nucleotide reverse transcriptase and protease inhibitors were 3.8%, 1.5% and 0.8%, respectively. Fifty-seven percent of strains were from clade B, 37.7% were clade F and 3.1% were clade C; there were no statistically significant differences with respect to resistance between clades. Recent infection tended to be more common in men (p = 0.06) and in municipalities in the south of the RMR (Jaboatão dos Guararapes and Cabo de Santo Agostinho) (p = 0.046). The high prevalence of recent infection and the high prevalence of non-B strains in this poor Brazilian region merit further attention.
Resumo:
Malaria remains a major world health problem following the emergence and spread of Plasmodium falciparum that is resistant to the majority of antimalarial drugs. This problem has since been aggravated by a decreased sensitivity of Plasmodium vivax to chloroquine. This review discusses strategies for evaluating the antimalarial activity of new compounds in vitro and in animal models ranging from conventional tests to the latest high-throughput screening technologies. Antimalarial discovery approaches include the following: the discovery of antimalarials from natural sources, chemical modifications of existing antimalarials, the development of hybrid compounds, testing of commercially available drugs that have been approved for human use for other diseases and molecular modelling using virtual screening technology and docking. Using these approaches, thousands of new drugs with known molecular specificity and active against P. falciparum have been selected. The inhibition of haemozoin formation in vitro, an indirect test that does not require P. falciparum cultures, has been described and this test is believed to improve antimalarial drug discovery. Clinical trials conducted with new funds from international agencies and the participation of several industries committed to the eradication of malaria should accelerate the discovery of drugs that are as effective as artemisinin derivatives, thus providing new hope for the control of malaria.
Resumo:
Diarrhoeal disease is still considered a major cause of morbidity and mortality among children. Among diarrhoeagenic agents, Shigella should be highlighted due to its prevalence and the severity of the associated disease. Here, we assessed Shigella prevalence, drug susceptibility and virulence factors. Faeces from 157 children with diarrhoea who sought treatment at the Children's Hospital João Paulo II, a reference children´s hospital in Belo Horizonte, state of Minas Gerais, Brazil, were cultured and drug susceptibility of the Shigella isolates was determined by the disk diffusion technique. Shigella virulence markers were identified by polymerase chain reaction. The bacterium was recovered from 10.8% of the children (88.2% Shigella sonnei). The ipaH, iuc, sen and ial genes were detected in strains isolated from all shigellosis patients; set1A was only detected in Shigella flexneri. Additionally, patients were infected by Shigella strains of different ial, sat, sen and set1A genotypes. Compared to previous studies, we observed a marked shift in the distribution of species from S. flexneri to S. sonnei and high rates of trimethoprim/sulfamethoxazole resistance.
Resumo:
The resistance of 139 Mycobacterium tuberculosis (MTB) isolates from the city of Monterrey, Northeast Mexico, to first and second-line anti-TB drugs was analysed. A total of 73 isolates were susceptible and 66 were resistant to anti-TB drugs. Monoresistance to streptomycin, isoniazid (INH) and ethambutol was observed in 29 cases. Resistance to INH was found in 52 cases and in 29 cases INH resistance was combined with resistance to two or three drugs. A total of 24 isolates were multidrug-resistant (MDR) resistant to at least INH and rifampicin and 11 MDR cases were resistant to five drugs. The proportion of MDR-TB among new TB cases in our target population was 0.72% (1/139 cases). The proportion of MDR-TB among previously treated cases was 25.18% (35/139 cases). The 13 polyresistant and 24 MDR isolates were assayed against the following seven second-line drugs: amikacin (AMK), kanamycin (KAN), capreomycin (CAP), clofazimine (CLF), ethionamide (ETH), ofloxacin (OFL) and cycloserine (CLS). Resistance to CLF, OFL or CLS was not observed. Resistance was detected to ETH (10.80%) and to AMK (2.70%), KAN (2.70%) and CAP (2.70%). One isolate of MDR with primary resistance was also resistant to three second-line drugs. Monterrey has a high prevalence of MDR-TB among previously treated cases and extensively drug-resistant-MTB strains may soon appear.
Resumo:
The new 8-methoxyquinolone moxifloxacin was tested against two ciprofloxacin-susceptible Staphylococcus aureus strains (strains P8 and COL) and two ciprofloxacin-resistant derivatives of strain P8 carrying a single grlA mutation (strain P8-4) and double grlA and gyrA mutations (strain P8-128). All strains were resistant to methicillin. The MICs of ciprofloxacin and moxifloxacin were 0.5 and 0.125 mg/liter, respectively, for P8; 0.25 and 0.125 mg/liter, respectively, for COL; 8 and 0.25 mg/liter, respectively, for P8-4; and >or=128 and 2 mg/liter, respectively, for P8-128. In vitro, the rate of spontaneous resistance of P8 and COL was 10(-7) on agar plates containing ciprofloxacin at two times the MIC, whereas it was <or=10(-10) on agar plates containing moxifloxacin at two times the MIC. Rats with experimental aortic endocarditis were treated with doses of drugs that simulate the kinetics in humans: moxifloxacin, 400 mg orally once a day; ciprofloxacin, 750 mg orally twice a day; or vancomycin, 1 g intravenously twice a day. Treatment was started either 12 or 24 h after infection and lasted for 3 days. Moxifloxacin treatment resulted in culture-negative vegetations in a total of 20 of 21 (95%) rats infected with P8, 10 of 11 (91%) rats infected with COL, and 19 of 24 (79%) rats infected with P8-4 (P < 0.05 compared to the results for the controls). In contrast, ciprofloxacin treatment sterilized zero of nine (0%) vegetations infected with first-level resistant mutant P8-4. Vancomycin sterilized only 8 of 15 (53%), 6 of 11 (54%), and 12 of 23 (52%) of the vegetations, respectively. No moxifloxacin-resistant derivative emerged among these organisms. However, moxifloxacin treatment of highly ciprofloxacin-resistant mutant P8-128 failed and selected for variants for which the MIC increased two times in 2 of 10 animals. Thus, while oral moxifloxacin might deserve consideration as treatment for staphylococcal infections in humans, caution related to its use against strains for which MICs are borderline is warranted.
Resumo:
CONTEXT Recently irisin (encoded by Fndc5 gene) has been reported to stimulate browning and uncoupling protein 1 expression in sc adipose tissue of mice. OBJECTIVE The objective of the study was to investigate FNDC5 gene expression in human muscle and adipose tissue and circulating irisin according to obesity, insulin sensitivity, and type 2 diabetes. DESIGN, PATIENTS, AND MAIN OUTCOME MEASURE Adipose tissue FNDC5 gene expression and circulating irisin (ELISA) were analyzed in 2 different cohorts (n = 125 and n = 76); muscle FNDC5 expression was also evaluated in a subcohort of 34 subjects. In vitro studies in human preadipocytes and adipocytes and in induced browning of 3T3-L1 cells (by means of retinoblastoma 1 silencing) were also performed. RESULTS In both sc and visceral adipose tissue, FNDC5 gene expression decreased significantly in association with obesity and was positively associated with brown adipose tissue markers, lipogenic, insulin pathway-related, mitochondrial, and alternative macrophage gene markers and negatively associated with LEP, TNFα, and FSP27 (a known repressor of brown genes). Circulating irisin and irisin levels in adipose tissue were significantly associated with FNDC5 gene expression in adipose tissue. In muscle, the FNDC5 gene was 200-fold more expressed than in adipose tissue, and its expression was associated with body mass index, PGC1α, and other mitochondrial genes. In obese participants, FNDC5 gene expression in muscle was significantly decreased in association with type 2 diabetes. Interestingly, muscle FNDC5 gene expression was significantly associated with FNDC5 and UCP1 gene expression in visceral adipose tissue. In men, circulating irisin levels were negatively associated with obesity and insulin resistance. Irisin was secreted from human adipocytes into the media, and the induction of browning in 3T3-L1 cells led to increased secreted irisin levels. CONCLUSIONS Decreased circulating irisin concentration and FNDC5 gene expression in adipose tissue and muscle from obese and type 2 diabetic subjects suggests a loss of brown-like characteristics and a potential target for therapy.
Resumo:
Countries could use the monitoring of drug resistance in malaria parasites as an effective early warning system to develop the timely response mechanisms that are required to avert the further spread of malaria. Drug resistance surveillance is essential in areas where no drug resistance has been reported, especially if neighbouring countries have previously reported resistance. Here, we present the results of a four-year surveillance program based on the sequencing of the pfcrt gene of Plasmodium falciparum populations from endemic areas of Honduras. All isolates were susceptible to chloroquine, as revealed by the pfcrt “CVMNK” genotype in codons 72-76.
Resumo:
Data on biliary carriage of bacteria and, specifically, of bacteria with worrisome and unexpected resistance traits (URB) are lacking. A prospective study (April 2010 to December 2011) was performed that included all patients admitted for <48 h for elective laparoscopic cholecystectomy in a Spanish hospital. Bile samples were cultured and epidemiological/clinical data recorded. Logistic regression models (stepwise) were performed using bactobilia or bactobilia by URB as dependent variables. Models (P < 0.001) showing the highest R(2) values were considered. A total of 198 patients (40.4% males; age, 55.3 ± 17.3 years) were included. Bactobilia was found in 44 of them (22.2%). The presence of bactobilia was associated (R(2) Cox, 0.30) with previous biliary endoscopic retrograde cholangiopancreatography (ERCP) (odds ratio [OR], 8.95; 95% confidence interval [CI], 2.96 to 27.06; P < 0.001), previous admission (OR, 2.82; 95% CI, 1.10 to 7.24; P = 0.031), and age (OR, 1.09 per year; 95% CI, 1.05 to 1.12; P < 0.001). Ten out of the 44 (22.7%) patients with bactobilia carried URB: 1 Escherichia coli isolate (CTX-M), 1 Klebsiella pneumoniae isolate (OXA-48), 3 high-level gentamicin-resistant enterococci, 1 vancomycin-resistant Enterococcus isolate, 3 Enterobacter cloacae strains, and 1 imipenem-resistant Pseudomonas aeruginosa strain. Bactobilia by URB (versus those by non-URB) was only associated (R(2) Cox, 0.19) with previous ERCP (OR, 11.11; 95% CI, 1.98 to 62.47; P = 0.006). For analyses of patients with bactobilia by URB versus the remaining patients, previous ERCP (OR, 35.284; 95% CI, 5.320 to 234.016; P < 0.001), previous intake of antibiotics (OR, 7.200; 95% CI, 0.962 to 53.906; P = 0.050), and age (OR, 1.113 per year of age; 95% CI, 1.028 to 1.206; P = 0.009) were associated with bactobilia by URB (R(2) Cox, 0.19; P < 0.001). Previous antibiotic exposure (in addition to age and previous ERCP) was a risk driver for bactobilia by URB. This may have implications in prophylactic/therapeutic measures.
Resumo:
The global emergence of Plasmodium vivax strains resistant to chloroquine (CQ) since the late 1980s is complicating the current international efforts for malaria control and elimination. Furthermore, CQ-resistant vivax malaria has already reached an alarming prevalence in Indonesia, East Timor and Papua New Guinea. More recently, in vivo studies have documented CQ-resistant P. vivax infections in Guyana, Peru and Brazil. Here, we summarise the available data on CQ resistance across P. vivax-endemic areas of Latin America by combining published in vivo and in vitro studies. We also review the current knowledge regarding the molecular mechanisms of CQ resistance in P. vivax and the prospects for developing and standardising reliable molecular markers of drug resistance. Finally, we discuss how the Worldwide Antimalarial Resistance Network, an international collaborative effort involving malaria experts from all continents, might contribute to the current regional efforts to map CQ-resistant vivax malaria in South America.
Resumo:
We conducted a prospective multicenter study in Spain to characterize the mechanisms of resistance to amoxicillin-clavulanate (AMC) in Escherichia coli. Up to 44 AMC-resistant E. coli isolates (MIC ≥ 32/16 μg/ml) were collected at each of the seven participant hospitals. Resistance mechanisms were characterized by PCR and sequencing. Molecular epidemiology was studied by pulsed-field gel electrophoresis (PFGE) and by multilocus sequence typing. Overall AMC resistance was 9.3%. The resistance mechanisms detected in the 257 AMC-resistant isolates were OXA-1 production (26.1%), hyperproduction of penicillinase (22.6%), production of plasmidic AmpC (19.5%), hyperproduction of chromosomic AmpC (18.3%), and production of inhibitor-resistant TEM (IRT) (17.5%). The IRTs identified were TEM-40 (33.3%), TEM-30 (28.9%), TEM-33 (11.1%), TEM-32 (4.4%), TEM-34 (4.4%), TEM-35 (2.2%), TEM-54 (2.2%), TEM-76 (2.2%), TEM-79 (2.2%), and the new TEM-185 (8.8%). By PFGE, a high degree of genetic diversity was observed although two well-defined clusters were detected in the OXA-1-producing isolates: the C1 cluster consisting of 19 phylogroup A/sequence type 88 [ST88] isolates and the C2 cluster consisting of 19 phylogroup B2/ST131 isolates (16 of them producing CTX-M-15). Each of the clusters was detected in six different hospitals. In total, 21.8% of the isolates were serotype O25b/phylogroup B2 (O25b/B2). AMC resistance in E. coli is widespread in Spain at the hospital and community levels. A high prevalence of OXA-1 was found. Although resistant isolates were genetically diverse, clonality was linked to OXA-1-producing isolates of the STs 88 and 131. Dissemination of IRTs was frequent, and the epidemic O25b/B2/ST131 clone carried many different mechanisms of AMC resistance.
Resumo:
Drug-resistant tuberculosis (TB) is a growing global threat. Approximately 450,000 people developed multidrug-resistant TB worldwide in 2012 and an estimated 170,000 people died from the disease. This paper describes the sociodemographic, clinical-epidemiological and bacteriological aspects of TB and correlates these features with the distribution of anti-TB drug resistance. Mycobacterium tuberculosis (MT) cultures and drug susceptibility testing were performed according to the BACTEC MGIT 960 method. The results demonstrated that MT strains from individuals who received treatment for TB and people who were infected with human immunodeficiency virus were more resistant to TB drugs compared to other individuals (p < 0.05). Approximately half of the individuals received supervised treatment, but most drug-resistant cases were positive for pulmonary TB and exhibited positive acid-fast bacilli smears, which are complicating factors for TB control programs. Primary healthcare is the ideal level for early disease detection, but tertiary healthcare is the most common entry point for patients into the system. These factors require special attention from healthcare managers and professionals to effectively control and monitor the spread of TB drug-resistant cases.
Resumo:
Benznidazole (BZ) is one of the two drugs used for Chagas disease treatment. Nevertheless therapeutic failures of BZ have been reported, which were mostly attributed to variable drug susceptibility among Trypanosoma cruzistrains. ATP-binding cassette (ABC) transporters are involved in a variety of translocation processes and some members have been implicated in drug resistance. Here we report the characterisation of the first T. cruzi ABCG transporter gene, named TcABCG1, which is over-expressed in parasite strains naturally resistant to BZ. Comparison ofTcABCG1 gene sequence of two TcI BZ-resistant strains with CL Brener BZ-susceptible strain showed several single nucleotide polymorphisms, which determined 11 amino acid changes. CL Brener transfected with TcI transporter genes showed 40-47% increased resistance to BZ, whereas no statistical significant increment in drug resistance was observed when CL Brener was transfected with the homologous gene. Only in the parasites transfected with TcI genes there was 2-2.6-fold increased abundance of TcABCG1transporter protein. The analysis in wild type strains also suggests that the level of TcABCG1transporter is related to BZ natural resistance. The characteristics of untranslated regions of TcABCG1genes of BZ-susceptible and resistant strains were investigated by computational tools.
Resumo:
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.
Resumo:
We investigated the mechanisms of resistance to carbapenems, aminoglycosides, glycylcyclines, tetracyclines, and quinolones in 90 multiresistant clinical strains of Acinetobacter baumannii isolated from two genetically unrelated A. baumannii clones: clone PFGE-ROC-1 (53 strains producing the OXA-58 β-lactamase enzyme and 18 strains with the OXA-24 β-lactamase) and clone PFGE-HUI-1 (19 strains susceptible to carbapenems). We used real-time reverse transcriptase PCR to correlate antimicrobial resistance (MICs) with expression of genes encoding chromosomal β-lactamases (AmpC and OXA-51), porins (OmpA, CarO, Omp33, Dcap-like, OprB, Omp25, OprC, OprD, and OmpW), and proteins integral to six efflux systems (AdeABC, AdeIJK, AdeFGH, CraA, AbeM, and AmvA). Overexpression of the AdeABC system (level of expression relative to that by A. baumannii ATCC 17978, 30- to 45-fold) was significantly associated with resistance to tigecycline, minocycline, and gentamicin and other biological functions. However, hyperexpression of the AdeIJK efflux pump (level of expression relative to that by A. baumannii ATCC 17978, 8- to 10-fold) was significantly associated only with resistance to tigecycline and minocycline (to which the TetB efflux system also contributed). TetB and TetA(39) efflux pumps were detected in clinical strains and were associated with resistance to tetracyclines and doxycycline. The absence of the AdeABC system and the lack of expression of other mechanisms suggest that tigecycline-resistant strains of the PFGE-HUI-1 clone may be associated with a novel resistance-nodulation-cell efflux pump (decreased MICs in the presence of the inhibitor Phe-Arg β-naphthylamide dihydrochloride) and the TetA(39) system.