947 resultados para alternative modeling approaches
Resumo:
The IEEE 802.15.4 protocol has the ability to support time-sensitive Wireless Sensor Network (WSN) applications due to the Guaranteed Time Slot (GTS) Medium Access Control mechanism. Recently, several analytical and simulation models of the IEEE 802.15.4 protocol have been proposed. Nevertheless, currently available simulation models for this protocol are both inaccurate and incomplete, and in particular they do not support the GTS mechanism. In this paper, we propose an accurate OPNET simulation model, with focus on the implementation of the GTS mechanism. The motivation that has driven this work is the validation of the Network Calculus based analytical model of the GTS mechanism that has been previously proposed and to compare the performance evaluation of the protocol as given by the two alternative approaches. Therefore, in this paper we contribute an accurate OPNET model for the IEEE 802.15.4 protocol. Additionally, and probably more importantly, based on the simulation model we propose a novel methodology to tune the protocol parameters such that a better performance of the protocol can be guaranteed, both concerning maximizing the throughput of the allocated GTS as well as concerning minimizing frame delay.
Resumo:
Most of the traditional software and database development approaches tend to be serial, not evolutionary and certainly not agile, especially on data-oriented aspects. Most of the more commonly used methodologies are strict, meaning they’re composed by several stages each with very specific associated tasks. A clear example is the Rational Unified Process (RUP), divided into Business Modeling, Requirements, Analysis & Design, Implementation, Testing and Deployment. But what happens when the needs of a well design and structured plan, meet the reality of a small starting company that aims to build an entire user experience solution. Here resource control and time productivity is vital, requirements are in constant change, and so is the product itself. In order to succeed in this environment a highly collaborative and evolutionary development approach is mandatory. The implications of constant changing requirements imply an iterative development process. Project focus is on Data Warehouse development and business modeling. This area is usually a tricky one. Business knowledge is part of the enterprise, how they work, their goals, what is relevant for analyses are internal business processes. Throughout this document it will be explained why Agile Modeling development was chosen. How an iterative and evolutionary methodology, allowed for reasonable planning and documentation while permitting development flexibility, from idea to product. More importantly how it was applied on the development of a Retail Focused Data Warehouse. A productized Data Warehouse built on the knowledge of not one but several client needs. One that aims not just to store usual business areas but create an innovative sets of business metrics by joining them with store environment analysis, converting Business Intelligence into Actionable Business Intelligence.
Resumo:
Next-generation vaccines for tuberculosis should be designed to prevent the infection and to achieve sterile eradication of Mycobacterium tuberculosis. Mucosal vaccination is a needle-free vaccine strategy that provides protective immunity against pathogenic bacteria and viruses in both mucosal and systemic compartments, being a promising alternative to current tuberculosis vaccines. Micro and nanoparticles have shown great potential as delivery systems for mucosal vaccines. In this review, the immunological principles underlying mucosal vaccine development will be discussed, and the application of mucosal adjuvants and delivery systems to the enhancement of protective immune responses at mucosal surfaces will be reviewed, in particular those envisioned for oral and nasal routes of administration. An overview of the essential vaccine candidates for tuberculosis in clinical trials will be provided, with special emphasis on the potential different antigens and immunization regimens.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Accepted in 13th IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMedia 2015), Amsterdam, Netherlands.
Resumo:
This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.
Resumo:
OBJECTIVE: The objective of the study was to develop a model for estimating patient 28-day in-hospital mortality using 2 different statistical approaches. DESIGN: The study was designed to develop an outcome prediction model for 28-day in-hospital mortality using (a) logistic regression with random effects and (b) a multilevel Cox proportional hazards model. SETTING: The study involved 305 intensive care units (ICUs) from the basic Simplified Acute Physiology Score (SAPS) 3 cohort. PATIENTS AND PARTICIPANTS: Patients (n = 17138) were from the SAPS 3 database with follow-up data pertaining to the first 28 days in hospital after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND RESULTS: The database was divided randomly into 5 roughly equal-sized parts (at the ICU level). It was thus possible to run the model-building procedure 5 times, each time taking four fifths of the sample as a development set and the remaining fifth as the validation set. At 28 days after ICU admission, 19.98% of the patients were still in the hospital. Because of the different sampling space and outcome variables, both models presented a better fit in this sample than did the SAPS 3 admission score calibrated to vital status at hospital discharge, both on the general population and in major subgroups. CONCLUSIONS: Both statistical methods can be used to model the 28-day in-hospital mortality better than the SAPS 3 admission model. However, because the logistic regression approach is specifically designed to forecast 28-day mortality, and given the high uncertainty associated with the assumption of the proportionality of risks in the Cox model, the logistic regression approach proved to be superior.
Resumo:
Canine dirofilariosis is a life-threatening parasitic disease that is increasingly reported worldwide. Once diagnosed the main treatment goals are to improve the animal's clinical condition and to eliminate all life stages of the parasite with minimal posttreatment side effects. This can be achieved through mechanical, surgical, or chemotherapeutical approaches. Currently, manual extraction is the preferred method to remove adult heartworms due to its diminished invasiveness, reduced damage to the vascular endothelium, and shortened anaesthesia duration. However, it remains an expensive technique that can be highly traumatic. To address this issue, a nontraumatic homemade catheter-guided snare was developed for heartworm removal by adapting and folding a 0.014-inch coronary wire (BMW, Abbott Vascular). Transvenous heartworm extraction was performed on a dog severely infected with adult heartworms by inserting the modified snare into a 6-F Judkins right coronary guiding catheter BMW (Cordis) and advancing it into the right ventricle under fluoroscopic guidance. Fifteen adult specimens of Dirofilaria immitis were successfully extracted from the pulmonary artery and right ventricle without complications. To assure the death of both larvae and adults, postoperative treatment was successfully managed using ivermectin, doxycycline, and melarsomine, with no recurrence after surgery.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
The MAP-i Doctoral Programme in Informatics, of the Universities of Minho, Aveiro and Porto
Resumo:
Understanding the behavior of c omplex composite materials using mixing procedures is fundamental in several industrial processes. For instance, polymer composites are usually manufactured using dispersion of fillers in polymer melt matrices. The success of the filler dispersion depends both on the complex flow patterns generated and on the polymer melt rheological behavior. Consequently, the availability of a numerical tool that allow to model both fluid and particle would be very useful to increase the process insight. Nowadays there ar e computational tools that allow modeling the behavior of filled systems, taking into account both the behavior of the fluid (Computational Rheology) and the particles (Discrete Element Method). One example is the DPMFoam solver of the OpenFOAM ® framework where the averaged volume fraction momentum and mass conservation equations are used to describe the fluid (continuous phase) rheology, and the Newton’s second law of motion is used to compute the particles (discrete phase) movement. In this work the refer red solver is extended to take into account the elasticity of the polymer melts for the continuous phase. The solver capabilities will be illustrated by studying the effect of the fluid rheology on the filler dispersion, taking into account different fluid types (generalized Newtonian or viscoelastic) and particles volume fraction and size. The results obtained are used to evaluate the relevance of considering the fluid complex rheology for the prediction of the composites morphology
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Dissertação de mestrado integrado em Civil Engineering
Resumo:
Inspired by natural structures, great attention has been devoted to the study and development of surfaces with extreme wettable properties. The meticulous study of natural systems revealed that the micro/nano-topography of the surface is critical to obtaining unique wettability features, including superhydrophobicity. However, the surface chemistry also has an important role in such surface characteristics. As the interaction of biomaterials with the biological milieu occurs at the surface of the materials, it is expected that synthetic substrates with extreme and controllable wettability ranging from superhydrophilic to superhydrophobic regimes could bring about the possibility of new investigations of cellâ material interactions on nonconventional surfaces and the development of alternative devices with biomedical utility. This first part of the review will describe in detail how proteins and cells interact with micro/nano-structured surfaces exhibiting extreme wettabilities.
Resumo:
Secondary metabolites from plants are important sources of high-value chemicals, many of them being pharmacologically active. These metabolites are commonly isolated through inefficient extractions from natural biological sources and are often difficult to synthesize chemically. Therefore, their production using engineered organisms has lately attracted an increased attention. Curcuminoids, an example of such metabolites, are produced in Curcuma longa and exhibit anti-cancer and anti-inflammatory activities. Herein we report the construction of an artificial biosynthetic pathway for the curcuminoids production in Escherichia coli. Different 4-coumaroyl-CoA ligases (4CL) and polyketide synthases (diketide-CoA synthase (DCS), curcumin synthase (CURS) and curcuminoid synthase) were tested. The highest curcumin production (70 mg/L) was obtained by feeding ferulic acid and with the Arabidopsis thaliana 4CL1 and C. longa DCS and CURS enzymes. Other curcuminoids (bisdemethoxy- and demethoxycurcumin) were also produced by feeding coumaric acid or a mixture of coumaric and ferulic acids, respectively. Curcuminoids, including curcumin, were also produced from tyrosine through the caffeic acid pathway. To produce caffeic acid, tyrosine ammonia lyase and 4-coumarate 3-hydroxylase were used. Caffeoyl-CoA O-methyltransferase was used to convert caffeoyl-CoA to feruloyl-CoA. This pathway represents an improvement of the curcuminoids heterologous production. The construction of this pathway in another model organism is being considered, as well as the introduction of alternative enzymes.