910 resultados para algebraic K-theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Close to equilibrium, a normal Bose or Fermi fluid can be described by an exact kinetic equation whose kernel is nonlocal in space and time. The general expression derived for the kernel is evaluated to second order in the interparticle potential. The result is a wavevector- and frequency-dependent generalization of the linear Uehling-Uhlenbeck kernel with the Born approximation cross section.

The theory is formulated in terms of second-quantized phase space operators whose equilibrium averages are the n-particle Wigner distribution functions. Convenient expressions for the commutators and anticommutators of the phase space operators are obtained. The two-particle equilibrium distribution function is analyzed in terms of momentum-dependent quantum generalizations of the classical pair distribution function h(k) and direct correlation function c(k). The kinetic equation is presented as the equation of motion of a two -particle correlation function, the phase space density-density anticommutator, and is derived by a formal closure of the quantum BBGKY hierarchy. An alternative derivation using a projection operator is also given. It is shown that the method used for approximating the kernel by a second order expansion preserves all the sum rules to the same order, and that the second-order kernel satisfies the appropriate positivity and symmetry conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a logarithmic potential theory on Riemann surfaces which generalizes logarithmic potential theory on the complex plane. We show the existence of an equilibrium measure and examine its structure. This leads to a formula for the structure of the equilibrium measure which is new even in the plane. We then use our results to study quadrature domains, Laplacian growth, and Coulomb gas ensembles on Riemann surfaces. We prove that the complement of the support of the equilibrium measure satisfies a quadrature identity. Furthermore, our setup allows us to naturally realize weak solutions of Laplacian growth (for a general time-dependent source) as an evolution of the support of equilibrium measures. When applied to the Riemann sphere this approach unifies the known methods for generating interior and exterior Laplacian growth. We later narrow our focus to a special class of quadrature domains which we call Algebraic Quadrature Domains. We show that many of the properties of quadrature domains generalize to this setting. In particular, the boundary of an Algebraic Quadrature Domain is the inverse image of a planar algebraic curve under a meromorphic function. This makes the study of the topology of Algebraic Quadrature Domains an interesting problem. We briefly investigate this problem and then narrow our focus to the study of the topology of classical quadrature domains. We extend the results of Lee and Makarov and prove (for n ≥ 3) c ≤ 5n-5, where c and n denote the connectivity and degree of a (classical) quadrature domain. At the same time we obtain a new upper bound on the number of isolated points of the algebraic curve corresponding to the boundary and thus a new upper bound on the number of special points. In the final chapter we study Coulomb gas ensembles on Riemann surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that the locus of the f' + if '' plot in the complex plane, f' being determined from measured f '' by using the dispersion relation, looks like a semicircle very near the absorption edge of Ge. The semicircular locus is derived from a quantum theory of X-ray resonant scattering when there is a sharp isolated peak in f '' just above the K-absorption edge. Using the semicircular behavior, an approach is proposed to determine the anomalous scattering factors in a crystal by fitting known calculated values based on an isolated-atom model to a semicircular focus. The determined anomalous scattering factors f' show excellent agreement with the measured values just below the absorption edge. In addition, the phase determination of a crystal structure factor has been considered by using the semicircular behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assume that the resistance matrix can be found in electrical impedance tomography from the assumption of linear dependence between the voltages and the currents and with the help of the resistance matrix and the transfer impedance between the electrodes, a directional algebraic reconstruction technique is proposed. The goal is to reconstruct the resistivity distribution by weighting the matrices that are obtained by calculating the orthogonal distance of the underlying mesh elements from the neighbouring port resistivity lines. These weighting matrices, which only depend on the topology of the underlying mesh, can be calculated offline and result in a computationally efficient online procedure with a reasonable image reconstruction performance. Simulation results are provided to validate this approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CGIAR Strategy and Results Framework sets out four system level outcomes (SLOs), namely: reducing rural poverty, improving food security, improving nutrition and health and sustainable management of natural resources. In pursuit of these objectives the CGIAR has developed a set of sixteen CGIAR Research Programs (CRPs), each of which is expected to make specific contributions to a range of intermediate development outcomes (IDOs) linked to the SLOs. As part of this work the CRPs are developing impact pathways and theories of change designed to explain how the programs will achieve IDOs. The purpose of the present paper is to explain the approach that the CRP on Aquatic Agricultural Systems (AAS) is taking to using these programmatic tools to help achieve impact.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conditional Moment Closure (CMC) is a suitable method for predicting scalars such as carbon monoxide with slow chemical time scales in turbulent combustion. Although this method has been successfully applied to non-premixed combustion, its application to lean premixed combustion is rare. In this study the CMC method is used to compute piloted lean premixed combustion in a distributed combustion regime. The conditional scalar dissipation rate of the conditioning scalar, the progress variable, is closed using an algebraic model and turbulence is modelled using the standard k-e{open} model. The conditional mean reaction rate is closed using a first order CMC closure with the GRI-3.0 chemical mechanism to represent the chemical kinetics of methane oxidation. The PDF of the progress variable is obtained using a presumed shape with the Beta function. The computed results are compared with the experimental measurements and earlier computations using the transported PDF approach. The results show reasonable agreement with the experimental measurements and are consistent with the transported PDF computations. When the compounded effects of shear-turbulence and flame are strong, second order closures may be required for the CMC. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theory of doping limits in semiconductors and insulators is applied to the case of wide gap oxides, crystalline, or amorphous, and used to explain that impurities do not in general give rise to gap states or a doping response. Instead, the system tends to form defect complexes or undergo symmetry-lowering reconstructions to expel gap states out of the band gap. The model is applied to impurities, such as trivalent metals, carbon, N, P, and B, in HfO2, the main gate dielectric used in field effect transistors. © 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Division of labour is a marked feature of multicellular organisms. Margulis proposed that the ancestors of metazoans had only one microtubule organizing center (MTOC), so they could not move and divide simultaneously. Selection for simultaneous movement and cell division had driven the division of labour between cells. However, no evidence or explanation for this assumption was provided. Why could the unicellular ancetors not have multiple MTOCs? The gain and loss of three possible strategies are discussed. It was found that the advantage of one or two MTOC per cell is environment-dependent. Unicellular organisms with only one MTOC per cell are favored only in resource-limited environments without strong predatory pressure. If division of labour occurring in a bicellular organism just makes simultaneous movement and cell division possible, the possibility of its fixation by natural selection is very low because a somatic cell performing the function of an MTOC is obviously wasting resources. Evolutionary biologists should search for other selective forces for division of labour in cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic structures in the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that (1) electronic energy levels decrease monotonically, and the energy difference between the energy levels increases as the GaAs quantum dot (QD) height increases; (2) strong state mixing is found between the different energy levels as the GaAs QD width changes; (3) the hole energy levels decrease more quickly than those of the electrons as the GaAs QD size increases; (4) in excited states, the hole energy levels are closer to each other than the electron ones; (5) the first heavy- and light-hole transition energies are very close. Our theoretical results agree well with the available experimental data. Our calculated results are useful for the application of the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantum waveguide theory is proposed for hole transport in the mesoscopic structures, including the band mixing effect. We found that due to the interference between the 'light' hole and 'heavy' wave, the transmission and reflection coefficients oscillate more irregularly as a function of incident wave vector geometry parameters. Furthermore conversion between the heavy hole and light hole states occurs at the intersection. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ballistic transport in the semiconductor, planar, circular quantum dot structures is studied theoretically. The transmission probabilities show apparent resonant tunneling peaks, which correspond to energies of bound states in the dot. By use of structures with different angles between the inject and exit channels, the resonant peaks can be identified very effectively. The perpendicular magnetic field has obvious effect on the energies of bound states in the quantum dot, and thus the resonant peaks. The treatment of the boundary conditions simplifies the problem to the solution of a set of linear algebraic equations. The theoretical results in this paper can be used to design planar resonant tunneling devices, whose resonant peaks are adjustable by the angle between the inject and exit channels and the applied magnetic field. The resonant tunneling in the circular dot structures can also be used to study the bound states in the absence and presence of magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of traces has been introduced for describing non-sequential behaviour of concurrent systems via its sequential observations. Traces represent concurrent processes in the same way as strings represent sequential ones. The theory of traces can be used as a tool for reasoning about nets and it is hoped that applying this theory one can get a calculus of the concurrent processes anologous to that available for sequential systems. The following topics will be discussed: algebraic properties of traces, trace models of some concurrency phenomena, fixed-point calculus for finding the behaviour of nets, modularity, and some applications of the presented theory.