938 resultados para adaptive management
Resumo:
The CGIAR System conducts research to produce international public goods (IPG) that are of wide applicability creating a scientific base which speeds and broadens local adaptive development. Integrated natural resources management (INRM) research is sometimes seen to be very location specific and consequently does not lend itself readily to the production of IPGs. In this paper we analyse ways in which strategic approaches to INRM research can have broad international applicability and serve as useful foundations for the development of locally adapted technologies. The paper describes the evolution of the IPG concept within the CGIAR and elaborates on five major types of IPGs that have been generated from a varied set of recent INRM research efforts. CGIAR networks have both strengths and weaknesses in INRM research and application, with enormous differences in relative research and development capacities, responsibilities and data access of its partners, making programme process evolution critical to acceptance and participation. Many of the lessons learnt regarding challenges and corresponding IPG research approaches are relevant to designing and managing future multi-scale, multi-locational, coordinated INRM programmes involving broad-based partnerships to address complex environmental and livelihood problems for development.
Resumo:
The deployment of Quality of Service (QoS) techniques involves careful analysis of area including: those business requirements; corporate strategy; and technical implementation process, which can lead to conflict or contradiction between those goals of various user groups involved in that policy definition. In addition long-term change management provides a challenge as these implementations typically require a high-skill set and experience level, which expose organisations to effects such as “hyperthymestria” [1] and “The Seven Sins of Memory”, defined by Schacter and discussed further within this paper. It is proposed that, given the information embedded within the packets of IP traffic, an opportunity exists to augment the traffic management with a machine-learning agent-based mechanism. This paper describes the process by which current policies are defined and that research required to support the development of an application which enables adaptive intelligent Quality of Service controls to augment or replace those policy-based mechanisms currently in use.
Resumo:
Climate change is expected to produce reductions in water availability in England, potentially necessitating adaptive action by the water industry to maintain supplies. As part of Ofwat's fifth Periodic Review (PR09), water companies recently released their draft Water Resources Management Plans, setting out how each company intends to maintain the balance between the supply and demand for water over the next 25 years, following Environment Agency guidelines. This paper reviews these plans to determine company estimates of the impact of climate change on water supply relative to other resource pressures. The approaches adopted for incorporating the impact in the plans and the proposed management solutions are also identified. Climate change impacts for individual resource zones range from no reductions in deployable output to greater than 50% over the planning period. The estimated national aggregated loss of deployable output under a “core” climate scenario is ~520 Ml/d (3% of deployable output) by 2034/35, the equivalent of the supply of one entire water company (South West Water). Climate change is the largest single driver of change in water supplies over the planning period. Over half of the climate change impact is concentrated in southern England. In extreme cases, climate change uncertainty is of the same magnitude as the change under the core scenario (up to a loss of ~475 Ml/d). 44 of the 68 resource zones with available data are estimated to have a climate change impact. In 35 of these climate change has the greatest impact although in 10 zones sustainability reductions have a greater impact. Of the overall change in downward pressure on the supply-demand balance over the planning period, ~56% is accounted for by increased demand (620 Ml/d) and supply side climate change accounts for ~37% (407 Ml/d). Climate change impacts have a cumulative impact in concert with other changing supply side reducing components increasing the national pressure on the supply-demand balance. Whilst the magnitude of climate change appears to justify its explicit consideration, it is rare that adaptation options are planned solely in response to climate change but as a suite of options to provide a resilient supply to a range of pressures (including significant demand side pressures). Supply-side measures still tend to be considered by water companies to be more reliable than demand-side measures.
Resumo:
Background Appropriately conducted adaptive designs (ADs) offer many potential advantages over conventional trials. They make better use of accruing data, potentially saving time, trial participants, and limited resources compared to conventional, fixed sample size designs. However, one can argue that ADs are not implemented as often as they should be, particularly in publicly funded confirmatory trials. This study explored barriers, concerns, and potential facilitators to the appropriate use of ADs in confirmatory trials among key stakeholders. Methods We conducted three cross-sectional, online parallel surveys between November 2014 and January 2015. The surveys were based upon findings drawn from in-depth interviews of key research stakeholders, predominantly in the UK, and targeted Clinical Trials Units (CTUs), public funders, and private sector organisations. Response rates were as follows: 30(55 %) UK CTUs, 17(68 %) private sector, and 86(41 %) public funders. A Rating Scale Model was used to rank barriers and concerns in order of perceived importance for prioritisation. Results Top-ranked barriers included the lack of bridge funding accessible to UK CTUs to support the design of ADs, limited practical implementation knowledge, preference for traditional mainstream designs, difficulties in marketing ADs to key stakeholders, time constraints to support ADs relative to competing priorities, lack of applied training, and insufficient access to case studies of undertaken ADs to facilitate practical learning and successful implementation. Associated practical complexities and inadequate data management infrastructure to support ADs were reported as more pronounced in the private sector. For funders of public research, the inadequate description of the rationale, scope, and decision-making criteria to guide the planned AD in grant proposals by researchers were all viewed as major obstacles. Conclusions There are still persistent and important perceptions of individual and organisational obstacles hampering the use of ADs in confirmatory trials research. Stakeholder perceptions about barriers are largely consistent across sectors, with a few exceptions that reflect differences in organisations’ funding structures, experiences and characterisation of study interventions. Most barriers appear connected to a lack of practical implementation knowledge and applied training, and limited access to case studies to facilitate practical learning. Keywords: Adaptive designs; flexible designs; barriers; surveys; confirmatory trials; Phase 3; clinical trials; early stopping; interim analyses
Resumo:
We discuss the development and performance of a low-power sensor node (hardware, software and algorithms) that autonomously controls the sampling interval of a suite of sensors based on local state estimates and future predictions of water flow. The problem is motivated by the need to accurately reconstruct abrupt state changes in urban watersheds and stormwater systems. Presently, the detection of these events is limited by the temporal resolution of sensor data. It is often infeasible, however, to increase measurement frequency due to energy and sampling constraints. This is particularly true for real-time water quality measurements, where sampling frequency is limited by reagent availability, sensor power consumption, and, in the case of automated samplers, the number of available sample containers. These constraints pose a significant barrier to the ubiquitous and cost effective instrumentation of large hydraulic and hydrologic systems. Each of our sensor nodes is equipped with a low-power microcontroller and a wireless module to take advantage of urban cellular coverage. The node persistently updates a local, embedded model of flow conditions while IP-connectivity permits each node to continually query public weather servers for hourly precipitation forecasts. The sampling frequency is then adjusted to increase the likelihood of capturing abrupt changes in a sensor signal, such as the rise in the hydrograph – an event that is often difficult to capture through traditional sampling techniques. Our architecture forms an embedded processing chain, leveraging local computational resources to assess uncertainty by analyzing data as it is collected. A network is presently being deployed in an urban watershed in Michigan and initial results indicate that the system accurately reconstructs signals of interest while significantly reducing energy consumption and the use of sampling resources. We also expand our analysis by discussing the role of this approach for the efficient real-time measurement of stormwater systems.
Resumo:
New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.
Resumo:
In this paper the architecture of an experimental multiparadigmatic programming environment is sketched, showing how its parts combine together with application modules in order to perform the integration of program modules written in different programming languages and paradigms. Adaptive automata are special self-modifying formal state machines used as a design and implementation tool in the representation of complex systems. Adaptive automata have been proven to have the same formal power as Turing Machines. Therefore, at least in theory, arbitrarily complex systems may be modeled with adaptive automata. The present work briefly introduces such formal tool and presents case studies showing how to use them in two very different situations: the first one, in the name management module of a multi-paradigmatic and multi-language programming environment, and the second one, in an application program implementing an adaptive automaton that accepts a context-sensitive language.
Resumo:
Government policies play a critical role in influencing market conditions, institutions and overall agricultural productivity. The thesis therefore looks into the history of agriculture development in India. Taking a political economy perspective, the historical account looks at significant institutional and technological innovations carried out in pre- independent and post independent India. It further focuses on the Green Revolution in Asia, as forty years after; the agricultural community still faces the task of addressing recurrent issue of food security amidst emerging challenges, such as climate change. It examines the Green Revolution that took place in India during the late 1960s and 70s in a historical perspective, identifying two factors of institutional change and political leadership. Climate change in agriculture development has become a major concern to farmers, researchers and policy makers alike. However, there is little knowledge on the farmers’ perception to climate change and to the extent they coincide with actual climatic data. Using a qualitative approach,it looks into the perceptions of the farmers in four villages in the states of Maharashtra and Andhra Pradesh. While exploring the adaptation strategies, the chapter looks into the dynamics of who can afford a particular technology and who cannot and what leads to a particular adaptation decision thus determining the adaptive capacity in water management. The final section looks into the devolution of authority for natural resource management to local user groups through the Water Users’ Associations as an important approach to overcome the long-standing challenges of centralized state bureaucracies in India. It addresses the knowledge gap of why some local user groups are able to overcome governance challenges such as elite capture, while others-that work under the design principles developed by Elinor Ostrom. It draws conclusions on how local leadership, can be promoted to facilitate participatory irrigation management.
Resumo:
Das intelligente Tutorensystem LARGO für die Rechtswissenschaften soll Jurastudenten helfen, Argumentationsstrategien zu lernen. Im verwendeten Ansatz werden Gerichtsprotokolle als Lernmaterialien verwendet: Studenten annotieren diese und erstellen graphische Repräsentationen des Argumentationsverlaufs. Das System kann dabei zur Reflexion über die von Anwälten vorgebrachten Argumente anregen und Lernende auf mögliche Schwächen in ihrer Analyse des Disputs hinweisen. Zur Erkennung von Schwächen verwendet das System Graphgrammatiken und kollaborative Filtermechanismen. Dieser Artikel stellt dar, wie in LARGO auf Basis der Bestimmung eines „Benutzungskontextes“ die Rückmeldungen im System benutzungsadaptiv gestaltet werden. Weiterhin diskutieren wir auf Basis der Ergebnisse einer kontrollierten Studie mit dem System, welche mit Jurastudierenden an der University of Pittsburgh stattfand, in wie weit der automatisch bestimmte Benutzungskontext zur Vorhersage von Lernerfolgen bei Studenten verwendbar ist.
Resumo:
Dynamic systems, especially in real-life applications, are often determined by inter-/intra-variability, uncertainties and time-varying components. Physiological systems are probably the most representative example in which population variability, vital signal measurement noise and uncertain dynamics render their explicit representation and optimization a rather difficult task. Systems characterized by such challenges often require the use of adaptive algorithmic solutions able to perform an iterative structural and/or parametrical update process towards optimized behavior. Adaptive optimization presents the advantages of (i) individualization through learning of basic system characteristics, (ii) ability to follow time-varying dynamics and (iii) low computational cost. In this chapter, the use of online adaptive algorithms is investigated in two basic research areas related to diabetes management: (i) real-time glucose regulation and (ii) real-time prediction of hypo-/hyperglycemia. The applicability of these methods is illustrated through the design and development of an adaptive glucose control algorithm based on reinforcement learning and optimal control and an adaptive, personalized early-warning system for the recognition and alarm generation against hypo- and hyperglycemic events.
Resumo:
Regime shifts, defined as a radical and persistent reconfiguration of an ecosystem following a disturbance, have been acknowledged by scientists as a very important aspect of the dynamic of ecosystems. However, their consideration in land management planning remains marginal and limited to specific processes and systems. Current research focuses on mathematical modeling and statistical analysis of spatio-temporal data for specific environmental variables. These methods do not fulfill the needs of land managers, who are confronted with a multitude of processes and pressure types and require clear and simple strategies to prevent regime shift or to increase the resilience of their environment. The EU-FP7 CASCADE project is looking at regime shifts of dryland ecosystems in southern Europe and specifically focuses on rangeland and forest systems which are prone to various land degradation threats. One of the aims of the project is to evaluate the impact of different management practices on the dynamic of the environment in a participatory manner, including a multi-stakeholder evaluation of the state of the environment and of the management potential. To achieve this objective we have organized several stakeholder meetings and we have compiled a review of management practices using the WOCAT methodology, which enables merging scientific and land users knowledge. We highlight here the main challenges we have encountered in applying the notion of regime shift to real world socio-ecological systems and in translating related concepts such as tipping points, stable states, hysteresis and resilience to land managers, using concrete examples from CASCADE study sites. Secondly, we explore the advantages of including land users’ knowledge in the scientific understanding of regime shifts. Moreover, we discuss useful alternative concepts and lessons learnt that will allow us to build a participatory method for the assessment of resilient management practices in specific socio-ecological systems and to foster adaptive dryland management.
Resumo:
Environmental transitions leading to spatial physical-chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an in situ and 96-h experimental incubation under conditions of high pressure of CO2 (PCO2 1200 ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food-rich but colder and corrosive estuary induced a traits trade-off expressed as depressed IR under in situ conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher than those of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should be examined in detail as a potential tool for risk mitigation policies in coastal management arrangements.
Resumo:
Esta tesis estudia la monitorización y gestión de la Calidad de Experiencia (QoE) en los servicios de distribución de vídeo sobre IP. Aborda el problema de cómo prevenir, detectar, medir y reaccionar a las degradaciones de la QoE desde la perspectiva de un proveedor de servicios: la solución debe ser escalable para una red IP extensa que entregue flujos individuales a miles de usuarios simultáneamente. La solución de monitorización propuesta se ha denominado QuEM(Qualitative Experience Monitoring, o Monitorización Cualitativa de la Experiencia). Se basa en la detección de las degradaciones de la calidad de servicio de red (pérdidas de paquetes, disminuciones abruptas del ancho de banda...) e inferir de cada una una descripción cualitativa de su efecto en la Calidad de Experiencia percibida (silencios, defectos en el vídeo...). Este análisis se apoya en la información de transporte y de la capa de abstracción de red de los flujos codificados, y permite caracterizar los defectos más relevantes que se observan en este tipo de servicios: congelaciones, efecto de “cuadros”, silencios, pérdida de calidad del vídeo, retardos e interrupciones en el servicio. Los resultados se han validado mediante pruebas de calidad subjetiva. La metodología usada en esas pruebas se ha desarrollado a su vez para imitar lo más posible las condiciones de visualización de un usuario de este tipo de servicios: los defectos que se evalúan se introducen de forma aleatoria en medio de una secuencia de vídeo continua. Se han propuesto también algunas aplicaciones basadas en la solución de monitorización: un sistema de protección desigual frente a errores que ofrece más protección a las partes del vídeo más sensibles a pérdidas, una solución para minimizar el impacto de la interrupción de la descarga de segmentos de Streaming Adaptativo sobre HTTP, y un sistema de cifrado selectivo que encripta únicamente las partes del vídeo más sensibles. También se ha presentado una solución de cambio rápido de canal, así como el análisis de la aplicabilidad de los resultados anteriores a un escenario de vídeo en 3D. ABSTRACT This thesis proposes a comprehensive approach to the monitoring and management of Quality of Experience (QoE) in multimedia delivery services over IP. It addresses the problem of preventing, detecting, measuring, and reacting to QoE degradations, under the constraints of a service provider: the solution must scale for a wide IP network delivering individual media streams to thousands of users. The solution proposed for the monitoring is called QuEM (Qualitative Experience Monitoring). It is based on the detection of degradations in the network Quality of Service (packet losses, bandwidth drops...) and the mapping of each degradation event to a qualitative description of its effect in the perceived Quality of Experience (audio mutes, video artifacts...). This mapping is based on the analysis of the transport and Network Abstraction Layer information of the coded stream, and allows a good characterization of the most relevant defects that exist in this kind of services: screen freezing, macroblocking, audio mutes, video quality drops, delay issues, and service outages. The results have been validated by subjective quality assessment tests. The methodology used for those test has also been designed to mimic as much as possible the conditions of a real user of those services: the impairments to evaluate are introduced randomly in the middle of a continuous video stream. Based on the monitoring solution, several applications have been proposed as well: an unequal error protection system which provides higher protection to the parts of the stream which are more critical for the QoE, a solution which applies the same principles to minimize the impact of incomplete segment downloads in HTTP Adaptive Streaming, and a selective scrambling algorithm which ciphers only the most sensitive parts of the media stream. A fast channel change application is also presented, as well as a discussion about how to apply the previous results and concepts in a 3D video scenario.