977 resultados para acid-base titration


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work, the pH dependent colour change of the crude flower extracts is suggested as subject in teaching chemical or acid-base equilibria, visual indicators and some aspects of spectrophotometric concepts and applications. The vegetal species used are commonly found in Brazil, and the extraction methodology proposed is inexpensive and easy to perform in secondary schools and in general chemistry or instrumental undergraduate courses. A bibliographic review about the use of vegetal extracts in chemical education and a discussion of the flower colour are also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some modifications made at silanization step and the introduction of r-nitrobenzil bromide as an alternative reagent to the 8-hydroxiquinolein immobilization in silica gel were important points that brought up the reduction of synthesis time, efficency improvement of the immobilization process and better hydrolysis stabilization to the final materials. The caracterization was made by infrared spectroscopy, elementary analysis, complexing capacity and acid-base properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Members of the bacterial genus Streptomyces are well known for their ability to produce an exceptionally wide selection of diverse secondary metabolites. These include natural bioactive chemical compounds which have potential applications in medicine, agriculture and other fields of commerce. The outstanding biosynthetic capacity derives from the characteristic genetic flexibility of Streptomyces secondary metabolism pathways: i) Clustering of the biosynthetic genes in chromosome regions redundant for vital primary functions, and ii) the presence of numerous genetic elements within these regions which facilitate DNA rearrangement and transfer between non-progeny species. Decades of intensive genetic research on the organization and function of the biosynthetic routes has led to a variety of molecular biology applications, which can be used to expand the diversity of compounds synthesized. These include techniques which, for example, allow modification and artificial construction of novel pathways, and enable gene-level detection of silent secondary metabolite clusters. Over the years the research has expanded to cover molecular-level analysis of the enzymes responsible for the individual catalytic reactions. In vitro studies of the enzymes provide a detailed insight into their catalytic functions, mechanisms, substrate specificities, interactions and stereochemical determinants. These are factors that are essential for the thorough understanding and rational design of novel biosynthetic routes. The current study is a part of a more extensive research project (Antibiotic Biosynthetic Enzymes; www.sci.utu.fi/projects/biokemia/abe), which focuses on the post-PKS tailoring enzymes involved in various type II aromatic polyketide biosynthetic pathways in Streptomyces bacteria. The initiative here was to investigate specific catalytic steps in anthracycline and angucycline biosynthesis through in vitro biochemical enzyme characterization and structural enzymology. The objectives were to elucidate detailed mechanisms and enzyme-level interactions which cannot be resolved by in vivo genetic studies alone. The first part of the experimental work concerns the homologous polyketide cyclases SnoaL and AknH. These catalyze the closure of the last carbon ring of the tetracyclic carbon frame common to all anthracycline-type compounds. The second part of the study primarily deals with tailoring enzymes PgaE (and its homolog CabE) and PgaM, which are responsible for a cascade of sequential modification reactions in angucycline biosynthesis. The results complemented earlier in vivo findings and confirmed the enzyme functions in vitro. Importantly, we were able to identify the amino acid -level determinants that influence AknH and SnoaL stereoselectivity and to determine the complex biosynthetic steps of the angucycline oxygenation cascade of PgaE and PgaM. In addition, the findings revealed interesting cases of enzyme-level adaptation, as some of the catalytic mechanisms did not coincide with those described for characterised homologs or enzymes of known function. Specifically, SnoaL and AknH were shown to employ a novel acid-base mechanism for aldol condenzation, whereas the hydroxylation reaction catalysed by PgaM involved unexpected oxygen chemistry. Owing to a gene-level fusion of two ancestral reading frames, PgaM was also shown to adopt an unusual quaternary sturucture, a non-covalent fusion complex of two alternative forms of the protein. Furthermore, the work highlighted some common themes encountered in polyketide biosynthetic pathways such as enzyme substrate specificity and intermediate reactivity. These are discussed in the final chapters of the work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development associated with the research field involving crystalline inorganic lamellar titanium hydrogenphosphate, Ti(HPO4).H2O, synthesized as alpha or gamma forms, is directly linked to the huge number of reactions, that occur inside the free interlamellar space. Two distinguishable well-characterized features such as ion-exchange and intercalation reactions are explored here. From the interactive point of view, the acidic OH centres distributed on the lamella can interact with cations or with basic polar molecules to exchange or to intercalate them. These chemical reactions are normally followed by an expansion of the interlamellar space, proportional to the amount intercalated, reflecting in ion radii or organic molecule size lengths used in ion-exchange or insertion processes, respectively. The effectiveness of the exchange increased when the original matrix has the proton of OH group previously ion-exchanged by an alkaline or an alkylammonium cations. Monoalkyl-, dialkyl- and heterocyclic amines are focused in this revision as clear and elucidative examples of acid-base interactive processes, that come out inside of the well-formed infinite sequence of inorganic lamellar structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aluminum metal and aluminum compounds have many applications in several branches of the industry and in our daily lives. The most important raw material for aluminum and its manufactured compounds is bauxite, a rock constituted mainly by aluminum hydroxides minerals. In this work, a didactic experiment aiming the preparation of alumina and potassium alum starting from bauxite is proposed for undergraduate students. Both compounds are of great commercial, scientific and historical interest. The experiment involves applications of important chemical principles such as acid-base and precipitation. Some chemical properties and uses of aluminum compounds are also illustrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the fruit extracts of Morus nigra - mulberry, Syzygium cuminii - jambolão, Vitis vinifera ¾ grape, Myrciaria cauliflora - jabuticaba are suggested as pH indicators in the form of either solutions or paper. The pH indicator solutions were prepared by soaking the fruits or their peels in ethanol 1:3 (m/V) for 24 h, followed by simple filtration. The pH indicator papers were prepared by imersion of the qualitative filter paper strips in the pH indicator solutions. The different pH leads to color changes in the indicator solutions or papers and it can be used for teaching elementary chemistry concepts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UNS S31254 SS electrodes have been built to substitute platinum in conductimetric titrations. The electrodes were tested in both acid-basic titration (chloridric acid and sodium hydroxide) and precipitation titration (sodium chloride and argentum nitrate as titrant). The practical application was exemplified from conductimetric tritations of HF ¾ HNO3 mixtures used in metalurgical industry to passivate stainless steels. The results were compared with those obtained using commercial platinum electrodes. The equivalent volumes obtained were comparable within 3% experimental error. Its application depends on the nature of electrolyte. These results have shown that stainless steel, less expensive than platinum (about three order of magnitude), can substitute platinum electrodes in routine analyses and didactic laboratories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rosin is a natural product from pine forests and it is used as a raw material in resinate syntheses. Resinates are polyvalent metal salts of rosin acids and especially Ca- and Ca/Mg- resinates find wide application in the printing ink industry. In this thesis, analytical methods were applied to increase general knowledge of resinate chemistry and the reaction kinetics was studied in order to model the non linear solution viscosity increase during resinate syntheses by the fusion method. Solution viscosity in toluene is an important quality factor for resinates to be used in printing inks. The concept of critical resinate concentration, c crit, was introduced to define an abrupt change in viscosity dependence on resinate concentration in the solution. The concept was then used to explain the non-inear solution viscosity increase during resinate syntheses. A semi empirical model with two estimated parameters was derived for the viscosity increase on the basis of apparent reaction kinetics. The model was used to control the viscosity and to predict the total reaction time of the resinate process. The kinetic data from the complex reaction media was obtained by acid value titration and by FTIR spectroscopic analyses using a conventional calibration method to measure the resinate concentration and the concentration of free rosin acids. A multivariate calibration method was successfully applied to make partial least square (PLS) models for monitoring acid value and solution viscosity in both mid-infrared (MIR) and near infrared (NIR) regions during the syntheses. The calibration models can be used for on line resinate process monitoring. In kinetic studies, two main reaction steps were observed during the syntheses. First a fast irreversible resination reaction occurs at 235 °C and then a slow thermal decarboxylation of rosin acids starts to take place at 265 °C. Rosin oil is formed during the decarboxylation reaction step causing significant mass loss as the rosin oil evaporates from the system while the viscosity increases to the target level. The mass balance of the syntheses was determined based on the resinate concentration increase during the decarboxylation reaction step. A mechanistic study of the decarboxylation reaction was based on the observation that resinate molecules are partly solvated by rosin acids during the syntheses. Different decarboxylation mechanisms were proposed for the free and solvating rosin acids. The deduced kinetic model supported the analytical data of the syntheses in a wide resinate concentration region, over a wide range of viscosity values and at different reaction temperatures. In addition, the application of the kinetic model to the modified resinate syntheses gave a good fit. A novel synthesis method with the addition of decarboxylated rosin (i.e. rosin oil) to the reaction mixture was introduced. The conversion of rosin acid to resinate was increased to the level necessary to obtain the target viscosity for the product at 235 °C. Due to a lower reaction temperature than in traditional fusion synthesis at 265 °C, thermal decarboxylation is avoided. As a consequence, the mass yield of the resinate syntheses can be increased from ca. 70% to almost 100% by recycling the added rosin oil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present paper describes the synthesis of crystalline zirconium hydrogen phosphate by direct precipitation and its intercalation with pyridine and n-butylamine. The simple experiment was tested in the undergraduate inorganic chemistry laboratory course for chemistry students at IQ-UNICAMP using inexpensive reagents. The materials were characterized by powder X-ray diffraction and infrared analyses in order to obtain detailed information of the solid structure changes as a result of the intercalation process. Pyridine and n-butylamine are focused in this work as clear and elucidative examples leading to acid-base interactive processes that result in the well-formed infinite sequence of inorganic lamellar structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The behaviour of Nafion® polymeric membranes containing acid-base dyes, bromothymol blue (BB) and methyl violet (MV), were studied aiming at constructing an optical sensor for pH measurement. BB revealed to be inadequate for developing sensing phases due to the electrostatic repulsion between negative groups of their molecules and the negative charge of the sulfonate group of the Nafion®, which causes leaching of the dye from the membrane. On the other hand, MV showed to be suitable due to the presence of positive groups in its structure. The membrane prepared from a methanolic solution whose Nafion®/dye molar ratio was 20 presented the best analytical properties, changing its color from green to violet in the pH range from 0.6 to 3.0. The membrane can be prepared with good reproducibility, presenting durability of ca. 6 months and response time of 22 s, making possible its use for pH determination in flow analysis systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aspects of visible spectrophotometry can be presented to students using simple experiments in which the color of the crude extract of Macroptilium lathyroides (L.) Urb. is bleached in the presence of nitrite ions in acidic medium. The dependence of the absorption intensity with time, the reaction completeness and the Beer law can be demonstrated. Quantitative results for mineral water samples "contaminated" with nitrite ions were obtained from a method based on the Griess reaction and a procedure based on the bleaching reaction between the crude extract and NO2- ions. Both the Griess and the bleaching reactions were found to be time dependent. Recoveries of about 100 - 104% were obtained with these procedures. The use of natural dyes attracted students' interest enhancing the teaching process. Experiments performed by the teaching staff suggested that the proposed methodology can be performed in a 4 h class, with relative errors ranging from 0.19 to 1.86% in relation to the Griess method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An undergraduate organic lab experiment is described based on the preparation of two readily accessible hydrazones. The UV-visible spectra of these N-H acids and of their conjugate bases are employed to illustrate the importance of through-conjugation in determining their acid strength and their internal charge-transfer-band transitions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Green coconut shells were treated with acid, base and hydrogen peroxide solutions for 3, 6, 12 and 24 h for removing toxic metals from synthetic wastewater. The removal of ions by the adsorbent treated with 0.1 mol L-1 NaOH/ 3h was 99.5% for Pb2+ and 97.9% for Cu2+. The removal of Cd2+, Ni2+, Zn2+, using adsorbent treated with 1.0 mol L-1 NaOH/3 h, was 98.5, 90.3 and 95.4%, respectively. Particle size, adsorbent concentration and adsorption kinetics were also studied. An adsorbent size of 60-99 mesh and a concentration of 30-40 g/L for 5 min exposure were satisfactory for maximum uptake of Pb2+, Ni2+, Cd2+, Zn2+ and Cu2+ and can be considered as promising parameters for treatment the aqueous effluents contaminated with toxic metals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Enzymes are extremely efficient catalysts. Here, part of the mechanisms proposed to explain this catalytic power will be compared to quantitative experimental results and computer simulations. Influence of the enzymatic environment over species along the reaction coordinate will be analysed. Concepts of transition state stabilisation and reactant destabilisation will be confronted. Divided site model and near-attack conformation hypotheses will also be discussed. Molecular interactions such as covalent catalysis, general acid-base catalysis, electrostatics, entropic effects, steric hindrance, quantum and dynamical effects will also be analysed as sources of catalysis. Reaction mechanisms, in particular that catalysed by protein tyrosine phosphatases, illustrate the concepts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vanadium oxide supported on hydrotalcite-type precursors was studied in the decomposition of isopropanol. Hydrotalcite-type compounds with different y = Mg+2/Al+3 ratios were synthesized by the method of coprecipitating nitrates of Mg+2 and Al+3 cations with K2CO3 as precipitant. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.