975 resultados para acellular scaffold


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to describe the neointimal healing on the abluminal side (ABL) of malapposed (ISA) struts and nonapposed side-branch (NASB) struts in terms of coverage by optical coherence tomography (OCT) and in comparison with the adluminal side (ADL).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To quantify the circumferential healing process at 6 and 12 months following scaffold implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein scaffolds that support molecular recognition have multiple applications in biotechnology. Thus, protein frames with robust structural cores but adaptable surface loops are in continued demand. Recently, notable progress has been made in the characterization of Ig domains of intracellular origin--in particular, modular components of the titin myofilament. These Ig belong to the I(intermediate)-type, are remarkably stable, highly soluble and undemanding to produce in the cytoplasm of Escherichia coli. Using the Z1 domain from titin as representative, we show that the I-Ig fold tolerates the drastic diversification of its CD loop, constituting an effective peptide display system. We examine the stability of CD-loop-grafted Z1-peptide chimeras using differential scanning fluorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance and demonstrate that the introduction of bioreactive affinity binders in this position does not compromise the structural integrity of the domain. Further, the binding efficiency of the exogenous peptide sequences in Z1 is analyzed using pull-down assays and isothermal titration calorimetry. We show that an internally grafted, affinity FLAG tag is functional within the context of the fold, interacting with the anti-FLAG M2 antibody in solution and in affinity gel. Together, these data reveal the potential of the intracellular Ig scaffold for targeted functionalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineered muscle constructs provide a promising perspective on the regeneration or substitution of irreversibly damaged skeletal muscle. However, the highly ordered structure of native muscle tissue necessitates special consideration during scaffold development. Multiple approaches to the design of anisotropically structured substrates with grooved micropatterns or parallel-aligned fibres have previously been undertaken. In this study we report the guidance effect of a scaffold that combines both approaches, oriented fibres and a grooved topography. By electrospinning onto a topographically structured collector, matrices of parallel-oriented poly(ε-caprolactone) fibres with an imprinted wavy topography of 90 µm periodicity were produced. Matrices of randomly oriented fibres or parallel-oriented fibres without micropatterns served as controls. As previously shown, un-patterned, parallel-oriented substrates induced myotube orientation that is parallel to fibre direction. Interestingly, pattern addition induced an orientation of myotubes at an angle of 24° (statistical median) relative to fibre orientation. Myotube length was significantly increased on aligned micropatterned substrates in comparison to that on aligned substrates without pattern (436 ± 245 µm versus 365 ± 212 µm; p < 0.05). We report an innovative, yet simple, design to produce micropatterned electrospun scaffolds that induce an unexpected myotube orientation and an increase in myotube length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare four different implantation modalities for the repair of superficial osteochondral defects in a caprine model using autologous, scaffold-free, engineered cartilage constructs, and to describe the short-term outcome of successfully implanted constructs. METHODS: Scaffold-free, autologous cartilage constructs were implanted within superficial osteochondral defects created in the stifle joints of nine adult goats. The implants were distributed between four 6-mm-diameter superficial osteochondral defects created in the trochlea femoris and secured in the defect using a covering periosteal flap (PF) alone or in combination with adhesives (platelet-rich plasma (PRP) or fibrin), or using PRP alone. Eight weeks after implantation surgery, the animals were killed. The defect sites were excised and subjected to macroscopic and histopathologic analyses. RESULTS: At 8 weeks, implants that had been held in place exclusively with a PF were well integrated both laterally and basally. The repair tissue manifested an architecture similar to that of hyaline articular cartilage. However, most of the implants that had been glued in place in the absence of a PF were lost during the initial 4-week phase of restricted joint movement. The use of human fibrin glue (FG) led to massive cell infiltration of the subchondral bone. CONCLUSIONS: The implantation of autologous, scaffold-free, engineered cartilage constructs might best be performed beneath a PF without the use of tissue adhesives. Successfully implanted constructs showed hyaline-like characteristics in adult goats within 2 months. Long-term animal studies and pilot clinical trials are now needed to evaluate the efficacy of this treatment strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and biological evaluation of four peptidomimetic analogs of somatostatin based on a constrained Trp residue, 3-amino-indolo[2,3-c]azepin-2-one (Aia), are reported. It is shown that dipeptidomimetics with a D-Aia-Lys sequence, functionalized with N- and C-terminal aromatic substituents, display a good selectivity for both sst4 and sst5. This study allowed us to identify a new highly potent sst5 agonist with good selectivity over the other receptors, except versus sst4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: In this in vitro feasibility study we analyzed tissue fusion using bovine serum albumin (BSA) and Indocyanine green (ICG) doped polycaprolactone (PCL) scaffolds in combination with a diode laser as energy source while focusing on the influence of irradiation power and albumin concentration on the resulting tensile strength and induced tissue damage. MATERIALS AND METHODS: A porous PCL scaffold doped with either 25% or 40% (w/w) of BSA in combination with 0.1% (w/w) ICG was used to fuse rabbit aortas. Soldering energy was delivered through the vessel from the endoluminal side using a continuous wave diode laser at 808 nm via a 400 microm core fiber. Scaffold surface temperatures were analyzed with an infrared camera. Optimum parameters such as irradiation time, radiation power and temperature were determined in view of maximum tensile strength but simultaneously minimum thermally induced tissue damage. Differential scanning calorimetry (DSC) was performed to measure the influence of PCL on the denaturation temperature of BSA. RESULTS: Optimum parameter settings were found to be 60 seconds irradiation time and 1.5 W irradiation power resulting in tensile strengths of around 2,000 mN. Corresponding scaffold surface temperature was 117.4+/- 12 degrees C. Comparison of the two BSA concentration revealed that 40% BSA scaffold resulted in significant higher tensile strength compared to the 25%. At optimum parameter settings, thermal damage was restricted to the adventitia and its interface with the outermost layer of the tunica media. The DSC showed two endothermic peaks in BSA containing samples, both strongly depending on the water content and the presence of PCL and/or ICG. CONCLUSIONS: Diode laser soldering of vascular tissue using BSA-ICG-PCL-scaffolds leads to strong and reproducible tissue bonds, with vessel damage limited to the adventitia. Higher BSA content results in higher tensile strengths. The DSC-measurements showed that BSA denaturation temperature is lowered by addition of water and/or ICG-PCL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poly(ethylene glycol) (PEG)-based hydrogel was used as a scaffold for chondrocyte culture. Branched PEG-vinylsulfone macromers were end-linked with thiol-bearing matrix metalloproteinase (MMP)-sensitive peptides (GCRDGPQGIWGQDRCG) to form a three-dimensional network in situ under physiologic conditions. Both four- and eight-armed PEG macromer building blocks were examined. Increasing the number of PEG arms increased the elastic modulus of the hydrogels from 4.5 to 13.5 kPa. PEG-dithiol was used to prepare hydrogels that were not sensitive to degradation by cell-derived MMPs. Primary bovine calf chondrocytes were cultured in both MMP-sensitive and MMP-insensitive hydrogels, formed from either four- or eight-armed PEG. Most (>90%) of the cells inside the gels were viable after 1 month of culture and formed cell clusters. Gel matrices with lower elastic modulus and sensitivity to MMP-based matrix remodeling demonstrated larger clusters and more diffuse, less cell surface-constrained cell-derived matrix in the chondron, as determined by light and electron microscopy. Gene expression experiments by real-time RT-PCR showed that the expression of type II collagen and aggrecan was increased in the MMP-sensitive hydrogels, whereas the expression level of MMP-13 was increased in the MMP-insensitive hydrogels. These results indicate that cellular activity can be modulated by the composition of the hydrogel. This study represents one of the first examples of chondrocyte culture in a bioactive synthetic material that can be remodeled by cellular protease activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of drugs and biologically relevant molecules contain heterocyclic systems. Often the presence of hetero atoms or groupings imparts preferential specificities in their biological responses. Amongst the heterocyclic systems, thiazolidine is a biologically important scaffold known to be associated with several biological activities. Some of the prominent biological responses attributed to this skeleton are antiviral, antibacterial, antifungal, antihistaminic, hypoglycemic, anti-inflammatory activities. This diversity in the biological response profiles of thiazolidine has attracted the attention of many researchers to explore this skeleton to its multiple potential against several activities. Many of these synthetic and biological explorations have been subsequently analyzed in detailed quantitative structure-activity relationship (QSAR) studies to correlate the respective structural features and physicochemical properties with the activities to identify the important structural components in deciding their activity behavior. In this, drugs or any biologically active molecules may be viewed as structural frames consisting of strategically positioned functional groups that will interact effectively with the complementary groups/sites of the receptor. With this in focus, the present article reviews the QSAR studies of diverse biological activities of the thiazolidines published during the past decade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To assess observations with multimodality imaging of the Absorb bioresorbable everolimus-eluting vascular scaffold performed in two consecutive cohorts of patients who were serially investigated either at 6 and 24 months or at 12 and 36 months. Methods and results: In the ABSORB multicentre single-arm trial, 45 patients (cohort B1) and 56 patients (cohort B2) underwent serial invasive imaging, specifically quantitative coronary angiography (QCA), intravascular ultrasound (IVUS), radiofrequency backscattering (IVUS-VH) and optical coherence tomography (OCT). Between one and three years, late luminal loss remained unchanged (6 months: 0.19 mm, 1 year: 0.27 mm, 2 years: 0.27 mm, 3 years: 0.29 mm) and the in-segment angiographic restenosis rate for the entire cohort B (n=101) at three years was 6%. On IVUS, mean lumen, scaffold, plaque and vessel area showed enlargement up to two years. Mean lumen and scaffold area remained stable between two and three years whereas significant reduction in plaque behind the struts occurred with a trend toward adaptive restrictive remodelling of EEM. Hyperechogenicity of the vessel wall, a surrogate of the bioresorption process, decreased from 23.1% to 10.4% with a reduction of radiofrequency backscattering for dense calcium and necrotic core. At three years, the count of strut cores detected on OCT increased significantly, probably reflecting the dismantling of the scaffold; 98% of struts were covered. In the entire cohort B (n=101), the three-year major adverse cardiac event rate was 10.0% without any scaffold thrombosis. Conclusions: The current investigation demonstrated the dynamics of vessel wall changes after implantation of a bioresorbable scaffold, resulting at three years in stable luminal dimensions, a low restenosis rate and a low clinical major adverse cardiac events rate.