926 resultados para Zeros of Entire Functions
Resumo:
"November 18 (legislative day, November 17), 2005."
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
The Palestinian region is changing rapidly, with both economic and cultural consequences. One way of approaching this very political process is thru the concept of landscape. By viewing the region as a multiprocessual, dynamic landscape the analysis allows for a holistic read where historical and contemporary projections, interpretations and notions of power are fused. This thesis draws on the scholarly fields of humanistic landscape research and aerial image interpretation as well as theories of orientalism and power. A case study of two regions of the West Bank is performed; interviews and observations provide localized knowledge that is then used in open-access image interpretation. By performing image interpretations this thesis explores the power embedded in mapping and the possible inclinations the development towards open-access geospatial analytic tools could have on the functions of power in the Palestinian landscape. By investigating the spatial configuration of the Palestinian landscape and tracing its roots this thesis finds four major themes that are particularly pivotal in the processual change of the Palestinian landscape: the Israeli/Palestinian time-space, the blurring of the conflict, the dynamics of the frontier region and the orientalist gaze.
Resumo:
Working in the F-basis provided by the factorizing F-matrix, the scalar products of Bethe states for the supersymmetric t-J model are represented by determinants. By means of these results, we obtain determinant representations of correlation functions for the model.
Resumo:
We review the recent progress on the construction of the determinant representations of the correlation functions for the integrable supersymmetric fermion models. The factorizing F-matrices (or the so-called F-basis) play an important role in the construction. In the F-basis, the creation (and the annihilation) operators and the Bethe states of the integrable models are given in completely symmetric forms. This leads to the determinant representations of the scalar products of the Bethe states for the models. Based on the scalar products, the determinant representations of the correlation functions may be obtained. As an example, in this review, we give the determinant representations of the two-point correlation function for the U-q(gl(2 vertical bar 1)) (i.e. q-deformed) supersymmetric t-J model. The determinant representations are useful for analyzing physical properties of the integrable models in the thermodynamical limit.
Resumo:
We propose and investigate a method for the stable determination of a harmonic function from knowledge of its value and its normal derivative on a part of the boundary of the (bounded) solution domain (Cauchy problem). We reformulate the Cauchy problem as an operator equation on the boundary using the Dirichlet-to-Neumann map. To discretize the obtained operator, we modify and employ a method denoted as Classic II given in [J. Helsing, Faster convergence and higher accuracy for the Dirichlet–Neumann map, J. Comput. Phys. 228 (2009), pp. 2578–2576, Section 3], which is based on Fredholm integral equations and Nyström discretization schemes. Then, for stability reasons, to solve the discretized integral equation we use the method of smoothing projection introduced in [J. Helsing and B.T. Johansson, Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques, Inverse Probl. Sci. Eng. 18 (2010), pp. 381–399, Section 7], which makes it possible to solve the discretized operator equation in a stable way with minor computational cost and high accuracy. With this approach, for sufficiently smooth Cauchy data, the normal derivative can also be accurately computed on the part of the boundary where no data is initially given.
Resumo:
We consider the problem of stable determination of a harmonic function from knowledge of the solution and its normal derivative on a part of the boundary of the (bounded) solution domain. The alternating method is a procedure to generate an approximation to the harmonic function from such Cauchy data and we investigate a numerical implementation of this procedure based on Fredholm integral equations and Nyström discretization schemes, which makes it possible to perform a large number of iterations (millions) with minor computational cost (seconds) and high accuracy. Moreover, the original problem is rewritten as a fixed point equation on the boundary, and various other direct regularization techniques are discussed to solve that equation. We also discuss how knowledge of the smoothness of the data can be used to further improve the accuracy. Numerical examples are presented showing that accurate approximations of both the solution and its normal derivative can be obtained with much less computational time than in previous works.
Resumo:
In this paper we investigate the Boolean functions with maximum essential arity gap. Additionally we propose a simpler proof of an important theorem proved by M. Couceiro and E. Lehtonen in [3]. They use Zhegalkin’s polynomials as normal forms for Boolean functions and describe the functions with essential arity gap equals 2. We use to instead Full Conjunctive Normal Forms of these polynomials which allows us to simplify the proofs and to obtain several combinatorial results concerning the Boolean functions with a given arity gap. The Full Conjunctive Normal Forms are also sum of conjunctions, in which all variables occur.
Resumo:
In this paper we examine discrete functions that depend on their variables in a particular way, namely the H-functions. The results obtained in this work make the “construction” of these functions possible. H-functions are generalized, as well as their matrix representation by Latin hypercubes.
Resumo:
∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany).
Resumo:
In this paper an alternative characterization of the class of functions called k -uniformly convex is found. Various relations concerning connections with other classes of univalent functions are given. Moreover a new class of univalent functions, analogous to the ’Mocanu class’ of functions, is introduced. Some results concerning this class are derived.