994 resultados para ZNO NANOWIRES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show from conventional magnetization measurements that the charge order (CO) is completely suppressed in 10 nm Pr0.5Ca0.5MnO3 (PCMO 10) nanoparticles. Novel magnetization measurements, designed by a special high field measurement protocol, show that the dominant ground state magnetic phase is ferromagnetic-metallic (FM-M), which is an equilibrium phase, which coexists with the residual charge ordered anti-ferromagnetic phase (CO AFM) (an arrested phase) and exhibits the characteristic features of a `magnetic glassy state' at low temperatures. It is observed that there is a drastic reduction in the field required to induce the AFM to FM transition (similar to 5-6 T) compared to their bulk counterpart(similar to 27 T); this phase transition is of first order in nature, broad, irreversible and the coexisting phases are tunable with the cooling field. Temperature-dependent magneto-transport data indicate the occurrence of a size-induced insulator-metal transition (TM-I) and anomalous resistive hysteresis (R-H) loops, pointing out the presence of a mixture of the FM-M phase and AFM-I phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and W-doped ZnO thin films were obtained using magnetron sputtering at working pressures of 0.4 Pa and 1.33 Pa. The films were deposited on glass and alumina substrates at room temperature and subsequently annealed at 400oC for 1 hour in air. The effects of pressure and W-doping on the structure, chemical, optical and electronic properties of the ZnO films for gas sensing were examined. From AFM, the doped film deposited at higher pressure (1.33 Pa) has spiky morphology with much lower grain density and porosity compared to the doped film deposited at 0.4 Pa. The average gain size and roughness of the annealed films were estimated to be 65 nm and 2.2 nm, respectively with slightly larger grain size and roughness appeared in the doped films. From XPS the films deposited at 1.33 Pa favored the formation of adsorbed oxygen on the film surface and this has been more pronounced in the doped film which created active sites for OH adsorption. As a consequence the W-doped film deposited at 1.33 Pa was found to have lower oxidation state of W (35.1 eV) than the doped film deposited at 0.4 Pa (35.9 eV). Raman spectra indicated that doping modified the properties of the ZnO film and induced free-carrier defects. The transmittance of the samples also reveals an enhanced free-carrier density in the W-doped films. The refractive index of the pure film was also found to increase from 1.7 to 2.2 after W-doping whereas the optical band gap only slightly increased. The W-doped ZnO film deposited at 0.4 Pa appeared to have favorable properties for enhanced gas sensing. This film showed significantly higher sensing performance towards 5-10 ppm NO2 at lower operating temperature of 150oC most dominantly due to increased free-carrier defects achieved by W-doping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compositional, structural, microstructural, dc electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol-gel process using a spin-coating technique were investigated. The ZnO films were obtained by 5 cycle spin-coated and dried zinc oxide films followed by annealing in air at 600 A degrees C. The films deposited on the platinum coated silicon substrate were crystallized in a hexagonal wurtzite form. The energy-dispersive X-ray (EDX) spectrometry shows Zn and O elements in the products with an approximate molar ratio. TEM image of ZnO thin film shows that a grain of about 60-80 nm in size is really an aggregate of many small crystallites of around 10-20 nm. Electron diffraction pattern shows that the ZnO films exhibited hexagonal structure. The SEM micrograph showed that the films consist in nanocrystalline grains randomly distributed with voids in different regions. The dc conductivity found in the range of 10(-5)-10(-6) (Omega cm)(-1). The optical study showed that the spectra for all samples give the transparency in the visible range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural, optical and magnetic studies of Co-doped ZnO have been carried out for bulk as well as thin films. The magnetic studies revealed the superparamagnetic nature for low-temperature synthesized samples, indicating the presence of cobalt metallic clusters, and this is supported by the optical studies. For the high-temperature sintered samples one obtains paramagnetism. The optical studies reveal the presence of Co2+ ions in the tetrahedral sites indicating proper doping. Interestingly, the films deposited by laser ablation from the paramagnetic target showed room temperature ferromagnetism. It appears that the magnetic nature of this system is process dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that commonly face-centered cubic (fcc) metallic nanowires can be stabilized in hexagonal structures even when their surface energy contribution is relatively small. With a modified electrochemical growth process, we have grown purely single-crystalline 4H silver nanowires (AgNWs) of diameters as large as 100 nm within nanoporous anodic alumina and polycarbonate templates. The growth process is not limited by the/Ag Nernst equilibrium potential, and time-resolved imaging with high-resolution transmission electron microscopy (TEM) indicates a kinematically new mechanism of nanowire growth. Most importantly, our experiments aim to separate the effects of confinement and growth conditions on the crystal structure of nanoscale systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of colloids of copper and zinc nanoparticles by solvated metal atom dispersion (SMAD) is described. The as-prepared colloids with a large size distribution of the particles are transformed into colloidal nanoparticles of a narrow size distribution by the digestive ripening process which involves refluxing the colloid at or near the boiling point of the solvent in the presence of a passivating ligand. The copper nanoparticles of 2.1 ± 0.3 nm and zinc nanoparticles of 3.9 ± 0.3 nm diameters have thus been obtained. Digestive ripening of the as-prepared copper and zinc colloids together in the presence of a passivating agent gave Cu@ZnO core−shell nanoparticles, with an average diameter of 3.0 ± 0.7 nm. Particles synthesized in this manner were characterized by UV−visible spectroscopy, high-resolution electron microscopy, energy-filtered electron microscopy, and powder X-ray diffraction methods which confirm the core−shell structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oleate-capped ZnO:MgO nanocrystals have been synthesized that are soluble in nonpolar solvents and which emit strongly in the visible region (450−600 nm) on excitation by UV radiation. The visible emission involves recombination of trap states of the nanocrystalline ZnO core and has a higher quantum yield than the band gap UV exciton emission. The spectrally resolved dynamics of the trap states have been investigated by time-resolved emission spectroscopy. The time-evolution of the photoluminescence spectra show that there are, in fact, two features in the visible emission whose relative importance and efficiencies vary with time. These features originate from recombination involving trapped electrons and holes, respectively, and with efficiencies that depend on the occupancy of the trap density of states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (MWCNTs) were decorated with crystalline zinc oxide nanoparticles (ZnO NPs) by wet chemical route to form MWCNT/ZnO NPs hybrid. The hybrid sample was characterized by scanning and transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrical conductivity of the hybrid can be tuned by varying the ZnO NPs content in the hybrid. In order to investigate the effect of nanoparticles loading on the conduction of MWCNTs network, electrical conductivity studies have been carried out in the wide temperature range 1.5-300K. The electrical conductivity of the hybrid below 100K is explained with the combination of variable range hopping conduction and thermal fluctuation induced tunnelling model. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel superplastic deformation in an intermetallic B2-NiAl nanowire of cross-sectional dimensions of similar to 20 angstrom with failure strain as high as similar to 700% at 700 K temperature is reported. The minimum temperature under which the superplasticity has been observed is around 0.36 T-m, which is much lower than 0.5 T-m (T-m = melting temperature i.e. 1911 K for bulk B2-NiAl). Superplasticity is observed due to transformation from crystalline phase to amorphous phase after yielding of the nanowire. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanostructures were deposited on flexible polymer sheet and cotton fabrics at room temperature by activated reactive evaporation. Room-temperature photoluminescence spectrum of ZnO nanostructured film exhibited a week intrinsic UV emission and a strong broad yellow-orange visible emission. TEM and HRTEM studies show that the grown nanostructures are crystalline in nature and their growth direction was indentified to be along [002]. ZnO nanostructures grown on the copper-coated flexible polymer sheets exhibited stable field-emissio characteristics with a threshold voltage of 2.74 V/mu m (250 mu A) and a very large field enhancement factor (beta) of 23,213. Cotton fabric coated with ZnO nanostructures show an excellent antimicrobial activity against Staphylococcus aureus bacteria (Gram positive), and similar to 73% reduction in the bacterial population is achieved compared to uncoated fabrics after 4 h in viability. Using a shadow mask technique, we also selectively deposited the nanostructures at room temperature on polymer substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the size-dependent melting of nanotubes based on a thermodynamic approach and shown that the melting temperature of nanotubes depends on the outer radius and on the inner radius through the thickness of the nanotubes. Size-dependent melting of nanowires and thin films has been derived from that of nanotubes. We validate the size-dependent melting of nanotubes, nanowires and thin films by comparing the results with available molecular dynamic simulations and experimental results. It has also been inferred that superheating occurs when the melting starts from the inner surface and proceeds towards the outer surface, while melting point depression occurs when the melting starts from the outer surface and proceeds towards the inner surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave, irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal wurtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140-160 nm and a wall of thickness, 40-50 nm. The length of nanorods and nanotubes varies in the narrow range of 500-600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural features,including preferred orientation and surface morphology of zinc oxide (ZnO) films deposited by combustion flame pyrolysis were investigated as a function of process parameters, which include precursor solution concentration, substrate-nozzle (S-N) distance, gas flow rate, and duration of deposition. In this technique, the precursor droplets react within the flame and form a coating on an amorphous silica substrate held in or near the flame. Depending on the process parameters, the state of decomposition at which the precursor arrives on the substrate varies substantially and this in turn dictates the orientation and microstructure of the films.