958 resultados para Yellow latosol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The velocity components across tidal fronts are examined using the Blumberg and Mellor 3-D nonlinear numerical coastal circulation model incorporated with the Mellor and Yamada level 2.5 turbulent closure model based on the reasonable model output of the M-2 tide and density residual currents. In the numerical experiments, upwelling motion appears around all the fronts with different velocity structures, accounting for surface cold water around the fronts. The experiments also suggest that the location and formation of fronts are closely related to topography and tidal mixing, as is the velocity structure around the front.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical distribution and stage-specific abundance of Calanus sinicus were investigated on three key transects in the southern Yellow Sea and the northern East China Sea in August 1999. The results showed that in summer C. sinicus shrank its distribution area to the central cold (less than or equal to10degreesC) bottom water in the Yellow Sea, i.e. the Yellow Sea Cold Bottom Water, remaining in high abundance (345.7 ind m(-3)). In the northern East China Sea on a transect from the mouth of the Yangtze River to the Okinawa trench, only a few individuals appeared in the inner side and none had been found either in the upper layer or in the deep layer of the outer shelf area. The population of C. sinicus in YSCBW consisted of mainly adults (46.83%) and C5 (37.41%). C1-C4 only accounted for 15.76%. The low proportion of the earlier copepodite stages and the high female:male ratio (11.39) indicated that the reproduction of C. sinicus in YSCBW was at a very low level due to the low temperature and low food concentration. It is concluded that the dramatic decrease of C. sinicus population in the shelf area of China seas in summer is caused by the shrinkage of its distribution area and the YSCBW served as an oversummering site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calanus sinicus aggregate at the depth of 40-60 m (ambient temperature is 16 degreesC) in the waters of the continental shelf of the Yellow Sea during summer. in animals found in near shore regions, there are changes in digestive gut cells structure, digestive enzyme activity (protease, amylase), and tissue enzyme (alkaline phosphatase (ALP)), which may represent adaptations by this cold-water animal to a sharp seasonal increase in temperature of 6-23 degreesC. The activities of the digestive enzymes (protease and amylase) are very low in animals at stations near the estuary of Yangtse River, whereas they are relatively high in animals at stations in the central Yellow Sea, During summer, B-cells of the intestine and the villi intestinalis disappear in animals that do not feed at stations near the estuary of the Yangtse River. Respiration rates were undetectable or quite low during summer in C. sinicus from stations near the estuary of the Yangtse River, whereas they were relatively high at stations in the central Yellow Sea. Based upon the morphological characteristics of the digestive gut structure, enzyme levels, respiration rates, and the distribution of C. sinicus, we concluded that C. sinicus might be dormant during summer in the near shore areas of the East China Sea while remaining active in the central Yellow Sea. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abundance of anchovy Engraulis japonicus larvae, >20 mum ciliates, copepod eggs and nauplii, and microzooplankton herbivorous activity were studied in the Yellow Sea in June 2000. Anchovy juveniles and larvae were found in only 6 of the 19 stations sampled. The ciliate communities were dominated by 2 species: Laboea strobila and Strombidium compressum. In the surface waters, the abundance of L. strobila ranged between 0 and 560 ind. l(-1). S. compressum only appeared at Stns 15 to 18 (20 to 3300 ind. l(-1)). L. strobila was found mainly in the top 20 m. The abundance of L. strobila was less than 50 ind, l(-1) in waters deeper than 25 m. S, compressum showed subsurface abundance peaks at the salinity abnormality. Tintinnids occurred occasionally with abundance lower than 100 ind. l(-1), The total ciliate abundance fell in the range of 40 to 3420 ind. l(-1). The ciliate biomass in the surface water and the water column ranged between 0,15 and 6.76 mug C l(-1) and 0.4 and 134.4 mg C m(-2), respectively, In the surface waters, the abundance of copepod eggs and nauplii ranged from 0,3 to 3.1 and 1,1 to 15.6 ind, l(-1), respectively. The average abundance of copepod eggs and nauplii in 4 depth (0, 5, 10 and 20 m) fell in the range of 0.2 to 2.8 and 1.0 to 29.4 ind. l(-1), respectively. As a food item of the E. japonicus post-larvae, the abundance of copepod nauplii and eggs appeared to be low. The abundance peaks of ciliate and E, japonicus post-larvae coincided. Although not found in the gut of E, japonicus post-larvae, aloricate ciliates might be ingested by first-feeding anchovy larvae, preventing initial starvation and prolonging the time to irreversible starvation. On the basis of dilution experiments with positive microzooplankton grazing rates, microzooplankton grazed at rates of 0 to 0.61 d(-1). Grazing pressure of microzooplankton on chlorophyll a standing stock (P-i) and potential chlorophyll a primary production (P-p) were 17 to 46% and 35 to 109% d(-1), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bottom sediment types in the Bohai Sea, Yellow Sea and East China Sea (BYECS) are diversified, and their distribution pattern is very complicated. However, the bottom sediment types can be simplified to be sandy sediment, clayey sediment and mixed sediment, which comprise the complicated distribution pattern of bottom sediment in the BYECS. The continental shelves of the BYECS are broad, with shallow water depths and tidal currents which are permanent and dominate the marine dynamics in the BYECS. Based on numerical simulation of tidal elevations and currents in the BYECS, the rates of suspended load transport and bed load transport during a single tidal cycle for sediments of eight different grain size ranges are calculated. The results show that any sediment, whose threshold velocity is less than that of tidal current, has the same transport trend. Suspended load transport rare, bed load transport rate, and the ratio of the former to the latter decrease with grain size becoming coarser and coarser. The erosion/accretion patterns of sediments with different grain sizes are determined by the sediment transport rate divergences, and the results show that the patterns are the same for sediments with different grain sizes. Three main bottom sediment types, i.e. sandy sediment mainly composed of fine sand, clayey sediment mainly composed of silty clay, and mixed sediment mainly composed of fine sand, silt, and clay, are obtained by computation. The three bottom sediment types and their distribution pattern are consistent not only with sediment transport field and the sea bed erosion/accretion pattern obtained by simulation, but also with field data of bottom sediment types and divisions. In the BYECS, sand ridges form mainly in the areas with strong rectilinear tidal currents, sand sheets form mainly in the areas dominated by strong rotatory tidal currents, and clayey sediments, i.e. mud patches, form mainly in the areas with weak tidal currents. Hence, not only the sandy sediments but also the clayey sediments in the BYECS are formed under the control of the whole tidal current field of the BYECS. The three main bottom sediment types are not isolated respectively-in fact, they constitute a whole tidal depositional system. Under the condition with no cyclonic cold eddy, the clayey sediments in the BYECS can form in weak tidal current environments. Therefore, a cold eddy is not necessary for the deposition of clayey sediments in the BYECS. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Yellow River (Huanghe) is the second largest river in China and is known for its high turbidity. It also has remarkably high levels of dissolved uranium (U) concentrations (up to 38 nmol l(-1)). To examine the mixing behavior of dissolved U between river water and seawater, surface water samples were collected along a salinity gradient from the Yellow River plume during September 2004 and were measured for dissolved U concentration, U-234:U-238 activity ratio, phosphate (PO43-), and suspended particulate matter. Laboratory experiments were also conducted to simulate the mixing process in the Yellow River plume using unfiltered Yellow River water and filtered seawater. The results showed a nonconservative behavior for dissolved U at salinities < 20 with an addition of U to the plume waters estimated at about 1.4 X 10(5) mol yr(-1). A similarity between variations in dissolved U and PO43- with salinity was also found. There are two major mechanisms, desorption from suspended sediments and diffusion from interstitial waters of bottom sediments, that may cause the elevated concentrations of dissolved U and PO43- in mid-salinity waters. Mixing experiments indicate that desorption seems more responsible for the elevated dissolved U concentrations, whereas diffusion influences more the enrichment of PO43-.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three surveys were carried out in anchovy spawning periods in southern Yellow Sea in May and June 2001, and June 2002. Chlorophyll a (Chl-a) concentration, bacterioplankton abundance, biomass and their variations along the zone of tidal fronts were investigated. The results showed that (1) high Synechococcus abundance distributed more often in frontal area and middle-surface layer of a stratified zone; and (2) the maximal abundance of bacteria occurred in stratified and mixed zone. 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial distribution of some large tintinnid species (nominally>76 mu m) was investigated according to samples collected by vertical towing in cruises to the southern Yellow Sea in summer 2000-2002 and 2004. Eight species were identified: Codonellopsis mobilis, Leprotintinnus netritus, Tintinnopsis karajacensis, T. japonica, T. kiaochowensis, T. butschlii, T. radix, and Parafavella sp. With maximum abundance of 158.2 ind/L in June 2004, C mobilis was the dominant species, lasting from May to July 2004. Tintinnid communities were patchy and distributed mainly in shallow waters along the shore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the spatial distribution and source of the PCBs in surface sediments of the Southern Yellow Sea (SYS) and influencing factors, such as the sediment characteristics (components, relative proportions and total organic carbon contents), and hydrodynamic conditions were analyzed. PCB concentrations in the surface sediments ranged from 518-5848 pg/g, with average values of 1715 pg/g decreasing sharply compared to last year. In the study area, the PCB pollution level in the middle area was the highest, followed by that of the east coast and the west coast, respectively. Although the PCB level in the coastal areas was lower than that in the middle areas, it was proven in our study that the Yellow Sea obtained PCBs by virtue of river inputs. There was a positive and pertinent correlation between the clay proportion and PCB concentrations, and the increase of the PCB concentrations was directly proportional to the increase of TOC contents, with r = 0.61, but it was contrary to the sediment grain size. Consequently, the factors controlling PCB distribution had direct or indirect relationships with sediment grain size; moreover, the hydrodynamic conditions determined the sediment components and grain size. In conclusion, hydrodynamic conditions of the Yellow Sea were the most important influencing factors effecting the distribution of PCBs in the surface sediments of the SYS. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilution incubations and Calanus sinicus addition incubations were simultaneously conducted at five stations in the Yellow Sea in June of 2004 to evaluate the impact of microzooplankton and Calanus sinicus on phytoplankton based on the Chlorophyll a (Chl-a) levels. The Chl-a growth rates (k) ranged from 0.60-1.67 d(-1), while microzooplankton grazed the Chl-a at rates (g) of 0.29-0.62 d(t-1). The addition of C. sinicus enhanced the Chl-a growth rate (Z) by 0.004-0.037 d(-1) ind.(-1) L. C. sinicus abundance ranged from 84.1-160.9 ind. m(-3), which occupied 90.7%-99.1% of the copepod (> 500 mu m) population. The in-situ increase in phytoplankton by C. sinicus community was estimated to be 0.000 4-0.005 9 d(-1). These results showed that microzooplankton were the main grazers of phytoplankton, while C. sinicus induced a slight increase in the levels of phytoplankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zooplankton plays a vital role in marine ecosystems. Variations in the zooplankton species composition, biomass, and secondary production will change the structure and function of the ecosystem. How to describe this process and make it easier to be modeled in the Yellow Sea ecosystem is the main purpose of this paper. The zooplankton functional groups approach, which is considered a good method of linking the structure of food webs and the energy flow in the ecosystems, is used to describe the main contributors of secondary produciton of the Yellow Sea ecosystem. The zooplankton can be classified into six functional groups: giant crustaceans, large copepods, small copepods, chaetognaths, medusae, and salps. The giant crustaceans, large copepods, and small copepods groups, which are the main food resources for fish, are defined depending on the size spectrum. Medusae and chaetognaths are the two gelatinous carnivorous groups, which compete with fish for food. The salps group, acting as passive filter-feeders, competes with other species feeding on phytoplankton, but their energy could not be efficiently transferred to higher trophic levels. From the viewpoint of biomass, which is the basis of the food web, and feeding activities, the contributions of each functional group to the ecosystem were evaluated; the seasonal variations, geographical distribution patterns, and species composition of each functional group were analyzed. The average zooplankton biomass was 2.1 g dry wt m(-2) in spring, to which the giant crustaceans, large copepods, and small copepods contributed 19, 44, and 26%, respectively. High biomasses of the large copepods and small copepods were distributed at the coastal waters, while the giant crustaceans were mainly located at offshore area. In summer, the mean biomass was 3.1 g dry wt m(-2), which was mostly contributed by the giant crustaceans (73%), and high biomasses of the giant crustaceans, large copepods, and small copepods were all distributed in the central part of the Yellow Sea. During autumn, the mean biomass was 1.8 g dry wt m(-2), which was similarly constituted by the giant crustaceans, large copepods, and small copepods (36, 33, and 23%, respectively), and high biomasses of the giant crustaceans and large copepods occurred in the central part of the Yellow Sea, while the small copepods were mainly located at offshore stations. The giant crustaceans and large copepods dominated the zooplankton biomass (2.9 g dry wt m(-2)) in winter, contributing respectively 57 and 27%, and they, as well as the small copepods, were all mainly located in the central part of the Yellow Sea. The chaetognaths group was mainly located in the northern part of the Yellow Sea during all seasons, but contributed less to the biomass compared with the other groups. The medusae and salps groups were distributed unevenly, with sporadic dynamics, mainly along the coastline and at the northern part of the Yellow Sea. No more than 10 species belonging to the respective functional groups dominated the zooplankton biomass and controlled the dynamics of the zooplankton community. The clear picture of the seasonal and spatial variations of each zooplankton functional group makes the complicated Yellow Sea ecosystem easier to be understood and modeled. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survival, growth and immune response of the scallop, Chlamys farreri, cultured in lantern nets at five different depths (2, 5, 10, 15, and 20 m below the sea surface) were studied in Haizhou Bay during the hot season (summer and autumn) of 2007. Survival and growth rates were quantified bimonthly. Immune activities in hemolymph (superoxide dismutase (SOD) and acid phosphatase (ACP)) were measured to evaluate the health of scallops at the end of the study. Environmental parameters at the five depths were also monitored during the experiment. Mortalities mainly occurred during summer. Survival of scallops suspended at 15 m (78.0%) and 20 m (86.7%) was significantly higher than at 2 m (62.9%), 5 m (60.8%) or 10 m (66.8%) at the end of the study. Mean shell height grew significantly faster at 10 m (205.0 mu m/d) and 20 m (236.9 mu m/d) than at 2, 5 or 15 m in summer (July 9 to September 1); however, shell growth rate at 20 m was significantly lower than at the other four depths in autumn (September 2 to November 6). In contrast to summer, scallops at 5 m grew faster (262.9 mu m/d) during autumn. The growth of soft tissue at different depths showed a similar trend to the shell. Growth rates of shell height and soft tissue were faster in autumn than in summer, with the exception of shell height at 20 m. SOD activity of scallops increased with depth, and ACP activity was significantly higher at 15 and 20 m than at other depths, which suggests that scallops were healthier near the bottom. Factors explaining the depth-related mortality and growth of scallops are also discussed. We conclude that the mass mortality of scallop, C. farreri, during summer can be prevented by moving the culture area to deeper water and yield can be maximized by suspending the scallops in deep water during summer and then transferring them to shallow water in autumn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilution and copepod addition incubations were conducted in the Yellow Sea (June) and the East China Sea (September) in 2003. Microzooplankton grazing rates were in the range of 0.37-0.83 d(-1) stopin most of the experiments (except at Station A3). Correspondingly, 31-50% of the chlorophyll a (Chl a) stock and 81-179% of the Chl a production was grazed by microzooplankton. At the end of 24 h copepod addition incubations, Chl a concentrations were higher in the copepod-added bottles than in the control bottles. The Chl a growth rate in the bottles showed good linear relationship with added copepod abundance. The presence of copepods could enhance the Chl a growth at a rate (Z) of 0.03-0.25 (on average 0.0691) d(-1) ind(-1) l. This study, therefore parallels many others, which show that microzooplankton are the main grazers of primary production in the sea, whereas copepods appear to have little direct role in controlling phytoplankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distributions of heterotrophic bacterial abundance and production were investigated in the East China Sea and the Yellow Sea during the autumn of 2000 and spring of 2001. Bacterial abundance varied in the range 3.2-15.7 (averaging 5.7) x 10(5) and 2.3-13.6 (averaging 6.2) x 10(5) cells cm(-3) in the spring and autumn, respectively. During autumn, bacterial production (BP) (0.27-7.77 mg C m(-3) day(-1)) was on average 3 fold that in spring (0.001-2.04 mg C m(-3) day(-1)). Bacterial average turnover rate (ratio of bacterial production:bacterial biomass, mu=0.21 day(-1)) in autumn was 3 times as high as in spring (0.07 day(-1)). The ratio of integrated bacterial biomass to integrated phytoplankton biomass in the euphotic zone ranged from 4 to 101% (averaging 35%) in spring and 24 to 556% (averaging 121%) in autumn. The results indicate that the distributions of heterotrophic bacteria were controlled generally by temperature in spring and additionally by substrate supply in autumn. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copepod species diversity, abundance and assemblages in relation to water masses over the continental shelf of the Yellow Sea (YS) and East China Sea (ECS) were studied extensively based on the net plankton samples in autumn 2000. Multivariate analysis based on copepod assemblage resulted in recognition of five groups (Groups 1-5) corresponding to the water masses. Groups 1 and 2 delineated from inshore stations with low salinity YS Surface Water, and offshore stations with YS Cold Water in the YS. Group 3 located in the joint area of YS and ECS mainly with Mixed Water. Groups 4 and 5 in the ECS delineated two assemblages mainly from inshore and shallow stations with ECS Mixed Water in the southeastern ECS, and offshore stations along the ECS shelf edge controlled by saline Kuroshio Water. Salinity and temperature were more important in characterizing copepod assemblage of the continental shelf than chlorophyll a. (c) 2005 Elsevier B.V. All rights reserved.