997 resultados para Yag-Laser


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Calcium phosphate coatings, obtained at different deposition rates by pulsed laser deposition with a Nd:YAG laser beam of 355-nm wavelength, were studied. The deposition rate was changed from 0.043 to 1.16 /shot by modification of only the ablated area, maintaining the local fluence constant to perform the ablation process in similar local conditions. Characterization of the coatings was performed by scanning electron microscopy, x-ray diffractometry, and infrared, micro-Raman, and x-ray photoelectron spectroscopy. The coatings showed a compact surface morphology formed by glassy gains with some droplets on them. Only hydroxyapatite (HA) and alpha-tricalcium phosphate (alpha-TCP) peaks were found in the x-ray diffractograms. The relative content of alpha TCP diminished with decreasing deposition rates, and only HA peaks were found for the lowest rate. The origin of alpha TCP is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interconnected porosity of the Cr3C2-NiCr coatings obtained by high-velocity oxy fuel spraying is detrimental in corrosion and wear resistance applications. Laser treatments allow sealing of their surfaces through melting and resolidification of a thin superficial layer. A Nd:YAG laser beam was used to irradiate Cr3C2-NiCr coatings either in the continuous wave mode or at different repetition rates in the pulsed one. Results indicated that high peak and low mean laser irradiances are not good, since samples presented deep grooves and an extensive crack network. At low peak and higher mean laser irradiances the surface was molten, and only a few shallow cracks were observed. The interconnected porosity was completely eliminated in a layer up to 80 m thick, formed by large Cr7C3 grains imbedded in a NiCr matrix.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: Although recent experience suggests that transmyocardial laser revascularisation (TMLR) relieves angina, its mechanism of action remains undefined. We examined its functional effects and analysed its morphological features in an animal model of acute ischaemia. METHODS: A total of 15 pigs were randomised to ligation of left marginal arteries (infarction group, n = 5), to TMLR of the left lateral wall using a holmium:yttrium-aluminium garnet (Ho:YAG) laser (laser group, n = 5), and to both (laser-infarction group, n = 5). All the animals were sacrificed 1 month after the procedure. Haemodynamics and echocardiography with segmental wall motion score were carried out at both time intervals (scale 0-3: 0, normal; 1, hypokinesia; 2, akinesia; 3, dyskinesia). Histology of the involved area was analysed. RESULTS: Laser group showed no change of the segmental wall motion score of the involved area 30 min after the laser channels were made (score: 0 +/- 0). Infarction and laser infarction groups both showed a persistent and definitive increase of the segmental wall motion score (at 30 min: 1.6 +/- 0.3 and 2 +/- 0, respectively; at 1 month: 1.8 +/- 0.2 and 1.8 +/- 0.4, respectively). These increases were all statistically significant in comparison with baseline values (P < 0.5), however comparison between infarction and laser-infarction groups showed no significant difference. On macroscopic examination of the endocardial surface, no channel was opened. On histology, there were signs of neovascularisation around the channels in the laser group, whereas in the laser-infarction group the channels were embedded in the infarction scar. CONCLUSIONS: In this acute pig model, TMLR did not provide improvement of contractility of the ischaemic myocardium. To the degree that the present study pertains to the clinical setting, the results suggest that mechanisms other than blood flow through the channels should be considered, such as a laser-induced triggering of neovascularisation or neural destruction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High reflectivity to laser light, alloying element evaporation during high power laser welding makes aluminium alloys highly susceptibility to weld defects such as porosity, cracking and undercutting. The dynamic behaviour of the keyhole, due to fluctuating plasma above the keyhole and the vaporization ofthe alloying elements with in the keyhole, is the key problem to be solved for the improvement of the weld quality and stabilization of the keyhole dynamics isperhaps the single most important development that can broaden the application of laser welding of aluminium alloys. In laser welding, the shielding gas is commonly used to stabilize the welding process, to improve the welded joint features and to protect the welded seam from oxidation. The chemicalcomposition of the shielding gas is a key factor in achieving the final qualityof the welded joints. Wide range of shielding gases varying from the pure gasesto complex mixtures based on helium, argon, nitrogen and carbon dioxide are commercially available. These gas mixtures should be considered in terms of their suitability during laser welding of aluminium alloys to produce quality welds. The main objective of the present work is to study the effect of the shielding gascomposition during laser welding of aluminium alloys. Aluminium alloy A15754 was welded using 3kW Nd-YAG laser (continuous wave mode). The alloy samples were butt welded with different shielding gases (pure and mixture of gases) so that high quality welds with high joint efficiencies could be produced. It was observed that the chemical composition of the gases influenced the final weld quality and properties. In general, the mixture gases, in correct proportions, enabled better utilisation of the properties of the mixing gases, stabilized the welding process and produced better weld quality compared to the pure shielding gases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thin disk and fiber lasers are new solid-state laser technologies that offer a combinationof high beam quality and a wavelength that is easily absorbed by metal surfacesand are expected to challenge the CO2 and Nd:YAG lasers in cutting of metals ofthick sections (thickness greater than 2mm). This thesis studied the potential of the disk and fiber lasers for cutting applications and the benefits of their better beam quality. The literature review covered the principles of the disk laser, high power fiber laser, CO2 laser and Nd:YAG laser as well as the principle of laser cutting. The cutting experiments were made with thedisk, fiber and CO2 lasers using nitrogen as an assist gas. The test material was austenitic stainless steel of sheet thickness 1.3mm, 2.3mm, 4.3mm and 6.2mm for the disk and fiber laser cutting experiments and sheet thickness of 1.3mm, 1.85mm, 4.4mm and 6.4mm for the CO2 laser cutting experiments. The experiments focused on the maximum cutting speeds with appropriate cut quality. Kerf width, cutedge perpendicularity and surface roughness were the cut characteristics used to analyze the cut quality. Attempts were made to draw conclusions on the influence of high beam quality on the cutting speed and cut quality. The cutting speeds were enormous for the disk and fiber laser cutting experiments with the 1.3mm and 2.3mm sheet thickness and the cut quality was good. The disk and fiber laser cutting speeds were lower at 4.3mm and 6.2mm sheet thickness but there was still a considerable percentage increase in cutting speeds compared to the CO2 laser cutting speeds at similar sheet thickness. However, the cut quality for 6.2mm thickness was not very good for the disk and fiber laser cutting experiments but could probably be improved by proper selection of cutting parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Nd:YAG laser is used as the palliative treatment of obstructive and/or hemorrhagic intestinal lesions with an effective but temporary symptomatic relief, with symptoms and signs recurrence after six to eight weeks. This report describes the treatment of a patient bearing a low rectal adenocarcinoma through diode laser ablation and the result after 17 months.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical emission spectroscopic studies were carried out on the plasma produced by ablation of zinc oxide target using the third harmonic 355 nm of Q-switched Nd:YAG laser, in vacuum and at three different ambient gas oxygen pressures. The spatial variations of electron density Ne and electron temperature Te were studied up to a distance of 20 mm from the target surface. The kinematics of the emitted particles and the expansion of the plume edge are discussed. The optimum conditions favorable for the formation of high quality zinc oxide thin films are thereby suggested.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work is mainly concentrated on setting up a NIR tunable diode laser absorption (TDLA) spectrometer for high-resolution molecular spectroscopic studies. For successfully recording the high-resolution tunable diode laser spectrum, various experimental considerations are to be taken into account like the setup should be free from mechanical vibrations, sample should be kept at a low pressure, laser should be in a single mode operation etc. The present experimental set up considers all these factors. It is to be mentioned here that the setting up of a high resolution NIR TDLA spectrometer is a novel experiment requiring much effort and patience. The analysis of near infrared (NIR) vibrational overtone spectra of some substituted benzene compounds using local mode model forms another part of the present work. An attempt is made to record the pulsed laser induced fluorescence/Raman spectra of some organic compounds. A Q-switched Nd:YAG laser is used as the excitation source. A TRIAX monochromator and CCD detector is used for the spectral recording. The observed fluorescence emission for carbon disulphide is centered at 680 nm; this is assigned as due to the n, p* transition. Aniline also shows a broad fluorescence emission centered at 725 nm, which is due to the p,p* transition. The pulsed laser Raman spectra of some organic compounds are also recorded using the same experimental setup. The calibration of the set up is done using the laser Raman spectra of carbon tetrachloride and carbon disulphide. The observed laser Raman spectra for aniline, o-chloroaniline and m-chlorotoluene show peaks characteristics of the aromatic ring in common and the characteristics peaks due to the substitutuent groups. Some new peaks corresponding to low-lying vibrations of these molecules are also assigned

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis is entitled “OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM GRAPHITE AND YBa2Cu3O7. The work presented in this thesis covers the experimental results on the plasma produced with moderately high power laser with irradiance range in between 10 GW cm 2 to 100 GW cm -2. The characterization of laser produced plasma from solid targets viz. graphite and high temperature superconducting material like YBa2Cu3O7 have been carried out. The fundamental frequency from a Q - switched Nd: YAG laser with 9 ns pulse duration is used for the present studies. Various optical emission emission diagnostic techniques were employed for the the characterization of the LPP which include emission spectroscopy, time resolved studies, line broadening method etc. In order to understand the physical nature of the LPP like recombination, collisional excitation and the laser interaction with plasma, the time resolved studies offer the most logical approach

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical emission studies of C2 molecules in plasma obtained by Nd:YAG laser ablation of graphite in a helium atmosphere are reported for irradiances in the range (1–9:2/ x 1010 W cm−2. The characteristics of the spectral emission intensity from the C2 (Swan band) species have been investigated as functions of the distance from the target, ambient pressure and laser irradiance. Estimates of vibrational temperatures of C2 species under various irradiance conditions are made. Results of measurements performed under different ambient helium gas pressures are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical emission studies of C2 molecules in plasma obtained by Nd:YAG laser ablation of graphite in a helium atmosphere are reported for irradiances in the range (1–9:2/ x 1010 W cm−2. The characteristics of the spectral emission intensity from the C2 (Swan band) species have been investigated as functions of the distance from the target, ambient pressure and laser irradiance. Estimates of vibrational temperatures of C2 species under various irradiance conditions are made. Results of measurements performed under different ambient helium gas pressures are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this thesis we have presented some aspects of the nonlinear dynamics of Nd:YAG lasers including synchronization, Hopf bifurcation, chaos control and delay induced multistability.We have chosen diode pumped Nd:YAG laser with intracavity KTP crystal operating with two mode and three mode output as our model system.Different types of orientation for the laser cavity modes were considered to carry out the studies. For laser operating with two mode output we have chosen the modes as having parallel polarization and perpendicular polarization. For laser having three mode output, we have chosen them as two modes polarized parallel to each other while the third mode polarized orthogonal to them.