977 resultados para Worst-case dimensioning
Resumo:
In this work, the risk of groundwater contamination from organic substances in sewage sludge from wastewater treatment stations was evaluated in its worst case. The sewage sludge was applied as fertilizer in corn culture, prioritizing the substances for monitoring. The assessing risk took place in a Typic Distrophic Red Latossol (TDRL) area, in the county district of Jaguariúna, SP. The simulators CMLS-94 and WGEN were used to evaluate the risk of twenty-eight organic substances in sewage sludge to leach to groundwater. The risk of groundwater contamination was accomplished for a single sludge dose application in a thousand independent and equally probable years, simulated to esteem the substances leaching in one year after the application date of the sludge. It is presented the substances that should be priorly monitored in groundwater.
Resumo:
Over the last century, mathematical optimization has become a prominent tool for decision making. Its systematic application in practical fields such as economics, logistics or defense led to the development of algorithmic methods with ever increasing efficiency. Indeed, for a variety of real-world problems, finding an optimal decision among a set of (implicitly or explicitly) predefined alternatives has become conceivable in reasonable time. In the last decades, however, the research community raised more and more attention to the role of uncertainty in the optimization process. In particular, one may question the notion of optimality, and even feasibility, when studying decision problems with unknown or imprecise input parameters. This concern is even more critical in a world becoming more and more complex —by which we intend, interconnected —where each individual variation inside a system inevitably causes other variations in the system itself. In this dissertation, we study a class of optimization problems which suffer from imprecise input data and feature a two-stage decision process, i.e., where decisions are made in a sequential order —called stages —and where unknown parameters are revealed throughout the stages. The applications of such problems are plethora in practical fields such as, e.g., facility location problems with uncertain demands, transportation problems with uncertain costs or scheduling under uncertain processing times. The uncertainty is dealt with a robust optimization (RO) viewpoint (also known as "worst-case perspective") and we present original contributions to the RO literature on both the theoretical and practical side.
Resumo:
The western honey bee, Apis mellifera L., is currently the model specie for pesticide risk assessment on pollinators with the assumption that the worst-case scenarios for this species are sufficiently conservative to protect other insect pollinators. However, recent studies have showed that wild species may be more sensitive to plant protection products, due to differences in biology and life cycles. Therefore, there is the need to extend the risk assessment within a more ecological approach, in order to ensure that there are no irreversible effects on non-target organisms and in the environment. My dissertation aims to expand the risk assessment to other insect pollinators (including wild and managed pollinators), in order to cover some of the gaps of the current schemes. In this thesis, it is presented three experiments that cover the early stages of a solitary bee (chapter 1), the development of molecular tools for early detection of sub-lethal effects (chapter 2) and the development of protocols to access lethal and sub-lethal effects on other pollinator taxa (Diptera; chapter 3).
Resumo:
Nowadays, product development in all its phases plays a fundamental role in the industrial chain. The need for a company to compete at high levels, the need to be quick in responding to market demands and therefore to be able to engineer the product quickly and with a high level of quality, has led to the need to get involved in new more advanced methods/ processes. In recent years, we are moving away from the concept of 2D-based design and production and approaching the concept of Model Based Definition. By using this approach, increasingly complex systems turn out to be easier to deal with but above all cheaper in obtaining them. Thanks to the Model Based Definition it is possible to share data in a lean and simple way to the entire engineering and production chain of the product. The great advantage of this approach is precisely the uniqueness of the information. In this specific thesis work, this approach has been exploited in the context of tolerances with the aid of CAD / CAT software. Tolerance analysis or dimensional variation analysis is a way to understand how sources of variation in part size and assembly constraints propagate between parts and assemblies and how that range affects the ability of a project to meet its requirements. It is critically important to note how tolerance directly affects the cost and performance of products. Worst Case Analysis (WCA) and Statistical analysis (RSS) are the two principal methods in DVA. The thesis aims to show the advantages of using statistical dimensional analysis by creating and examining various case studies, using PTC CREO software for CAD modeling and CETOL 6σ for tolerance analysis. Moreover, it will be provided a comparison between manual and 3D analysis, focusing the attention to the information lost in the 1D case. The results obtained allow us to highlight the need to use this approach from the early stages of the product design cycle.
Resumo:
L’inquinamento olfattivo, negli ultimi anni, ha acquisito rilevanza a livello istituzionale e varie Regioni italiane hanno adottato Regolamenti e Linee Guida in materia. Queste, individuano gli studi di impatto olfattivo come strumenti per valutare la necessità di interventi correttivi, a seguito di simulazioni effettuate con modelli di dispersione atmosferica. In studi di primo livello uno dei modelli utilizzabili è quello gaussiano, con cui vengono ricercate le concentrazioni di inquinante massime possibili nelle situazioni di simulazione considerate, a scopo di screening. In questo elaborato gli output di queste simulazioni saranno confrontati e correlati con quelli ottenuti da un modello di dispersione non stazionario di tipo lagrangiano a particelle, utilizzato invece negli studi di impatto olfattivo di secondo livello. Le variabili studiate sono state la concentrazione odorigena di picco, confrontata con il 98° percentile delle concentrazioni di picco orario su base annua, e la relativa distanza dalla sorgente. Il setting sperimentale presume una singola sorgente puntiforme, di cui è stata variata l’altezza della ciminiera. Per tutte le altezze emissive considerate, ogni run di simulazione è stato effettuato con entrambi i modelli. Le operazioni di regressione eseguite sugli output così ottenuti, hanno evidenziato delle buone funzioni di correlazione per entrambe le variabili considerate, valutate attraverso il parametro R2. Questo permette un’analisi di impatto olfattivo di primo livello molto più accurata, poiché, utilizzando all’atto pratico un modello di tipo gaussiano, si possono stimare da esso i risultati che si sarebbero ottenuti con l’applicazione di quello lagrangiano, più complesso e in linea con quanto richiesto dalla normativa. Si ottengono, quindi, valutazioni di impatto più aderenti al territorio analizzato senza, tuttavia, la necessità di utenti con competenze tecniche specifiche e di strumenti informatici con potenze di calcolo molto elevate.
Resumo:
Journal of Cleaner Production, nº 17, p. 36-52
Resumo:
A renewed interest on the use of tolls for funding motorways and regulating their demands has been recovered in the last years. However, less attention has been put to the road safety effects derived from this policy. Although toll motorways show quality levels equal or above free motorways, charging users for the use of better infrastructure shifts some traffic to their low quality adjacent alternatives. In the present study we test whether charging for the use of the better road might negatively affect road safety in the worst adjacent road. The results confirm our hypothesis opening a new concern.
Resumo:
Public authorities and road users alike are increasingly concerned by recent trends in road safety outcomes in Barcelona, which is the European city with the highest number of registered Powered Two-Wheel (PTW) vehicles per inhabitant,. In this study we explore the determinants of motorcycle and moped accident severity in a large urban area, drawing on Barcelona’s local police database (2002-2008). We apply non-parametric regression techniques to characterize PTW accidents and parametric methods to investigate the factors influencing their severity. Our results show that PTW accident victims are more vulnerable, showing greater degrees of accident severity, than other traffic victims. Speed violations and alcohol consumption provide the worst health outcomes. Demographic and environment-related risk factors, in addition to helmet use, play an important role in determining accident severity. Thus, this study furthers our understanding of the most vulnerable vehicle types, while our results have direct implications for local policy makers in their fight to reduce the severity of PTW accidents in large urban areas.
Resumo:
Työn tavoitteena oli tarkastella kuinka henkilöstökoulutus vaikuttaa koulutettavan tietoihin, taitoihin ja hänen käyttäytymiseensä työssä eli muuttuuko henkilöstökoulutus yksilön osaamiseksi. Samalla kartoitettiin oppimista edistäviä ja toisaalta estäviä seikkoja.Vastauksia tutkimusongelmiin etsittiin sekä teorian kautta että tarkastelemalla Case yrityksessä Nordea Pankissa läpivietyä koulutusohjelmaa. Tutkielman empiirinen osuus suoritettiin kahdella lomakekyselyllä sekä niiden tuloksia syventävällä puolistrukturoidulla lomakehaastattelulla.Tutkielman tuloksista voidaan päätellä, että henkilöstökoulutus on hyvä keino eksplisiittisen tiedon jakamiseen. Se parantaa henkilöstön osaamistasoa. Aikuisen oppimisprosessi perustuu hänen oppimismotivaatioonsa sekä hänen aikaisempiin kokemuksiinsa. Oppimisprosessia tukee organisaation oppimiskulttuuri, jossa on motivoiva ilmapiiri ja joka kannustaa jatkuvaan oppimiseen. Kiire ja motivaation puute ovat pahimmat oppimisen esteet.
Resumo:
What are the effects of natural disasters on electoral results? Some authors claim that catastrophes have a negative effect on the survival of leaders in a democracy because voters have a propensity to punish politicians for not preventing or poorly handling a crisis. In contrast, this paper finds that these events might be beneficial for leaders. Disasters are linked to leader survival through clientelism: they generate an in-flow of resources in the form of aid, which increase money for buying votes. Analyzing the rainy season of 2010-2011 in Colombia, considered its worst disaster in history, I use a difference-in-differences strategy to show that in the local election incumbent parties benefited from the disaster. The result is robust to different specifications and alternative explanations. Moreover, places receiving more aid and those with judicial evidence of vote-buying irregularities, are more likely to reelect the incumbent, supporting the mechanism proposed by this paper.
Resumo:
There has been 47 recessions in the United States of America (US) since 1790. US recessions have increasingly affected economies of other countries in the world as nations become more and more interdependent on each other. The worst economic recession so far was the “Great Depression” – an economic recession that was caused by the 1929 crash of the stock market in the US. The 2008 economic recession in the US was a result of the burst of the “housing bubble” created by predatory lending. The economic recession resulted in increased unemployment (according to NBER 8.7 million jobs were lost from Feb. 2008 to Feb. 2010); decrease in GDP by 5.1%; increase in poverty level from 12.1% (2007) to 16.0% (2008) (NBER) This dissertation is an attempt to research the impact of the 2008 economic recession on different types of residential investments: a case study of five (5) diverse neighborhoods/zip codes in Washington DC, USA The main findings were that the effect of the 2008 economic depression on the different types of residential properties was dependent on the location of the property and the demographics/socio-economic factors associated with that location.
Resumo:
Includes bibliography
Resumo:
In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.
Resumo:
Wave energy conversion has an essential difference from other renewable energies since the dependence between the devices design and the energy resource is stronger. Dimensioning is therefore considered a key stage when a design project of Wave Energy Converters (WEC) is undertaken. Location, WEC concept, Power Take-Off (PTO) type, control strategy and hydrodynamic resonance considerations are some of the critical aspects to take into account to achieve a good performance. The paper proposes an automatic dimensioning methodology to be accomplished at the initial design project stages and the following elements are described to carry out the study: an optimization design algorithm, its objective functions and restrictions, a PTO model, as well as a procedure to evaluate the WEC energy production. After that, a parametric analysis is included considering different combinations of the key parameters previously introduced. A variety of study cases are analysed from the point of view of energy production for different design-parameters and all of them are compared with a reference case. Finally, a discussion is presented based on the results obtained, and some recommendations to face the WEC design stage are given.
Resumo:
We analyse the performance persistence of Islamic and Socially Responsible Investment (SRI) mutual funds. We adopt a multi-stage strategy in which, in the first stage, partial frontiers’ approaches are considered to measure the performance of the different funds in the sample. In the second stage, the results yielded by the partial frontiers are plugged into different investment strategies based on a recursive estimation methodology whose persistence performance is evaluated in the third stage of the analysis. Results indicate that, for both types of funds, performance persistence actually exists, but only for the worst and, most notably, best funds. This result is robust not only across methods (and different choices of tuning parameters within each method) but also across both SRI and Islamic funds—although in the case of the latter persistence was stronger for the best funds. The persistence of SRI and Islamic funds represents an important result for investors and the market, since it provides information on both which funds to invest in and which funds to avoid. Last but not least, the use of the aforementioned techniques in the context of mutual funds could also be of interest for the non-conclusive literature.