815 resultados para Worm algorithm
Resumo:
The development and tests of an iterative reconstruction algorithm for emission tomography based on Bayesian statistical concepts are described. The algorithm uses the entropy of the generated image as a prior distribution, can be accelerated by the choice of an exponent, and converges uniformly to feasible images by the choice of one adjustable parameter. A feasible image has been defined as one that is consistent with the initial data (i.e. it is an image that, if truly a source of radiation in a patient, could have generated the initial data by the Poisson process that governs radioactive disintegration). The fundamental ideas of Bayesian reconstruction are discussed, along with the use of an entropy prior with an adjustable contrast parameter, the use of likelihood with data increment parameters as conditional probability, and the development of the new fast maximum a posteriori with entropy (FMAPE) Algorithm by the successive substitution method. It is shown that in the maximum likelihood estimator (MLE) and FMAPE algorithms, the only correct choice of initial image for the iterative procedure in the absence of a priori knowledge about the image configuration is a uniform field.
Resumo:
We consider stochastic partial differential equations with multiplicative noise. We derive an algorithm for the computer simulation of these equations. The algorithm is applied to study domain growth of a model with a conserved order parameter. The numerical results corroborate previous analytical predictions obtained by linear analysis.
Resumo:
We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow.
Resumo:
We herein present a preliminary practical algorithm for evaluating complementary and alternative medicine (CAM) for children which relies on basic bioethical principles and considers the influence of CAM on global child healthcare. CAM is currently involved in almost all sectors of pediatric care and frequently represents a challenge to the pediatrician. The aim of this article is to provide a decision-making tool to assist the physician, especially as it remains difficult to keep up-to-date with the latest developments in the field. The reasonable application of our algorithm together with common sense should enable the pediatrician to decide whether pediatric (P)-CAM represents potential harm to the patient, and allow ethically sound counseling. In conclusion, we propose a pragmatic algorithm designed to evaluate P-CAM, briefly explain the underlying rationale and give a concrete clinical example.
Resumo:
We present a numerical method for spectroscopic ellipsometry of thick transparent films. When an analytical expression for the dispersion of the refractive index (which contains several unknown coefficients) is assumed, the procedure is based on fitting the coefficients at a fixed thickness. Then the thickness is varied within a range (according to its approximate value). The final result given by our method is as follows: The sample thickness is considered to be the one that gives the best fitting. The refractive index is defined by the coefficients obtained for this thickness.
Resumo:
Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.
Resumo:
The primary goal of this project is to demonstrate the accuracy and utility of a freezing drizzle algorithm that can be implemented on roadway environmental sensing systems (ESSs). The types of problems related to the occurrence of freezing precipitation range from simple traffic delays to major accidents that involve fatalities. Freezing drizzle can also lead to economic impacts in communities with lost work hours, vehicular damage, and downed power lines. There are means for transportation agencies to perform preventive and reactive treatments to roadways, but freezing drizzle can be difficult to forecast accurately or even detect as weather radar and surface observation networks poorly observe these conditions. The detection of freezing precipitation is problematic and requires special instrumentation and analysis. The Federal Aviation Administration (FAA) development of aircraft anti-icing and deicing technologies has led to the development of a freezing drizzle algorithm that utilizes air temperature data and a specialized sensor capable of detecting ice accretion. However, at present, roadway ESSs are not capable of reporting freezing drizzle. This study investigates the use of the methods developed for the FAA and the National Weather Service (NWS) within a roadway environment to detect the occurrence of freezing drizzle using a combination of icing detection equipment and available ESS sensors. The work performed in this study incorporated the algorithm developed initially and further modified for work with the FAA for aircraft icing. The freezing drizzle algorithm developed for the FAA was applied using data from standard roadway ESSs. The work performed in this study lays the foundation for addressing the central question of interest to winter maintenance professionals as to whether it is possible to use roadside freezing precipitation detection (e.g., icing detection) sensors to determine the occurrence of pavement icing during freezing precipitation events and the rates at which this occurs.
Resumo:
Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.
Resumo:
Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.
Resumo:
Background: Attention to patients with acute minor-illnesses requesting same-day consultation represents a major burden in primary care. The workload is assumed by general practitioners in many countries. A number of reports suggest that care to these patients may be provided, at in least in part, by nurses. However, there is scarce information with respect to the applicability of a program of nurse management for adult patients with acute minor-illnesses in large areas. The aim of this study is to assess the effectiveness of a program of nurse algorithm-guided care for adult patients with acute minor illnesses requesting same-day consultation in primary care in a largely populated area. Methods: A cross-sectional study of all adult patients seeking same day consultation for 16 common acute minor illnesses in a large geographical area with 284 primary care practices. Patients were included in a program of nurse case management using management algorithms. The main outcome measure was case resolution, defined as completion of the algorithm by the nurse without need of referral of the patient to the general practitioner. The secondary outcome measure was return to consultation, defined as requirement of new consultation for the same reason as the first one, in primary care within a 7-day period. Results: During a two year period (April 2009-April 2011), a total of 1,209,669 consultations were performed in the program. Case resolution was achieved by nurses in 62.5% of consultations. The remaining cases were referred to a general practitioner. Resolution rates ranged from 94.2% in patients with burns to 42% in patients with upper respiratory symptoms. None of the 16 minor illnesses had a resolution rate below 40%. Return to consultation during a 7-day period was low, only 4.6%. Conclusions: A program of algorithms-guided care is effective for nurse case management of patients requesting same day consultation for minor illnesses in primary care.
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy, Total Variation (TV)- based energies and more recently non-local means. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm or fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n2) and O(1/√ε), while existing techniques are in O(1/n2) and O(1/√ε). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.
Resumo:
Pyogenic liver abscess is a severe condition and a therapeutic challenge. Treatment failure may be due to an unrecognized ingested foreign body that migrated from the gastrointestinal tract. There has recently been a marked increase in the number of reported cases of this condition, but initial misdiagnosis as cryptogenic liver abscess still occurs in the majority of cases. We conducted the current study to characterize this entity and provide a diagnostic strategy applicable worldwide. To this end, data were collected from our case and from a systematic review that identified 59 well-described cases. Another systematic review identified series of cryptogenic-and Asian Klebsiella-liver abscess; these data were pooled and compared with the data from the cases of migrated foreign body liver abscess. The review points out the low diagnostic accuracy of history taking, modern imaging, and even surgical exploration. A fistula found through imaging procedures or endoscopy warrants surgical exploration. Findings suggestive of foreign body migration are symptoms of gastrointestinal perforation, computed tomography demonstration of a thickened gastrointestinal wall in continuity with the abscess, and adhesions seen during surgery. Treatment failure, left lobe location, unique location (that is, only 1 abscess location within the liver), and absence of underlying conditions also point to the diagnosis, as shown by comparison with the cryptogenic liver abscess series. This study demonstrates that migrated foreign body liver abscess is a specific entity, increasingly reported. It usually is not cured when unrecognized, and diagnosis is mainly delayed. This study provides what we consider the best available evidence for timely diagnosis with worldwide applicability. Increased awareness is required to treat this underestimated condition effectively, and further studies are needed.
Resumo:
BACKGROUND: Surveillance of multiple congenital anomalies is considered to be more sensitive for the detection of new teratogens than surveillance of all or isolated congenital anomalies. Current literature proposes the manual review of all cases for classification into isolated or multiple congenital anomalies. METHODS: Multiple anomalies were defined as two or more major congenital anomalies, excluding sequences and syndromes. A computer algorithm for classification of major congenital anomaly cases in the EUROCAT database according to International Classification of Diseases (ICD)v10 codes was programmed, further developed, and implemented for 1 year's data (2004) from 25 registries. The group of cases classified with potential multiple congenital anomalies were manually reviewed by three geneticists to reach a final agreement of classification as "multiple congenital anomaly" cases. RESULTS: A total of 17,733 cases with major congenital anomalies were reported giving an overall prevalence of major congenital anomalies at 2.17%. The computer algorithm classified 10.5% of all cases as "potentially multiple congenital anomalies". After manual review of these cases, 7% were agreed to have true multiple congenital anomalies. Furthermore, the algorithm classified 15% of all cases as having chromosomal anomalies, 2% as monogenic syndromes, and 76% as isolated congenital anomalies. The proportion of multiple anomalies varies by congenital anomaly subgroup with up to 35% of cases with bilateral renal agenesis. CONCLUSIONS: The implementation of the EUROCAT computer algorithm is a feasible, efficient, and transparent way to improve classification of congenital anomalies for surveillance and research.