979 resultados para Western pacific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The voluminous volcanic eruptions in the Nauru Basin, Western Pacific, have long been regarded as important research targets for tectonic history of the Pacific Plate and for the widespread Cretaceous volcanic activity in the Western Pacific. The Nauru Basin volcanic rocks were recovered at Site 462 by Deep Sea Drilling Project (DSDP) Legs 61 and 89, where more than 600 m of lavas and sills were drilled, thereby making it the deepest penetration into crust of Cretaceous age in the Pacific Ocean. For paleomagnetism, this section represents a unique possibility for averaging out secular variation to obtain a reliable paleolatitude estimate. However, previous paleomagnetic studies have only been subjected to alternating field (AF) demagnetization on several core samples, thus, unable to provide comprehensive understanding on the paleolatitude of the basin. The work reported here aims to determine the Cretaceous paleomagnetic paleolatitude for the Pacific Plate and define the magnetostratigraphy for the basaltic sections drilled in the Nauru Basin. A total of 391 basaltic rock samples were carefully re-sampled from DSDP Sites 462 and 462A. Stepwise thermal and AF demagnetizations have isolated characteristic components in the majority of the samples. The most important findings from this study include: (1) Two normal and one reversed polarity intervals are identified in Site 462, and six normal and six reversed polarity intervals are found in Site 462A, although possible erroneous markings of the opposite azimuth for some reversed polarity cores during the DSDP coring cannot be completely ruled out. (2) Based on previous radiometric ages, the magnetostratigraphic correlations with the Geomagnetic Polarity Time Scale (GPTS) indicate that the lower-basaltic flow unit in Site 462A began to erupt at least before 130 Ma. No correlation is available for the upper-sill unit. (3) Paleosecular variation for the lower-flow unit has been sufficiently averaged out; whereas bias may exist for that of the upper-sill unit; (4) The calculated mean inclination of ~50° for the lower-flow unit yields a paleolatitude of 30.8°S for the Nauru Basin at the time of emplacement. This value is well to the north of suggested location in plate reconstruction models, suggesting that there has been a significant amount of apparent polar wander of the Nauru Basin and Pacific plate since 130 Ma. In addition, the paleolatitude for the Nauru Basin is ~7° further south and the basin's age is more than 10 my older than those of the Ontong Java Plateau (OJP), which suggest that the volcanic eruptions of the lower flows in the Nauru Basin are unlikely related to the emplacement of the Ontong Java Plateau.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leg 61 of the Deep Sea Drilling Project (DSDP) was concerned with drilling a single continuously cored multiple re-entry hole at site 462 in the Central Nauru Basin (Fig. 1). Preliminary results of this drilling, which penetrated more than 1 km beneath the sea floor, were presented earlier. One major result was the discovery of a late Cretaceous off-ridge volcanic/intrusive complex of basaltic composition and great thickness (>500 m). We now present trace element abundance data for these basalts. Results of the drilling provide further support for a relatively long-lived thermal and magmatic event in the late Cretaceous resulting in voluminous and widespread magmatism in the central and western Pacific consistent with earlier suggestions. The trace element data show that most of the rocks produced during this event have trace element characteristics intermediate between those of normal and transitional mid-ocean ridge basalts (N- and T-type MORB) and different from Hawaiian basalts. These results indicate that basalts which are depleted in light rare earth elements (LREE) relative to the heavy REE may, in certain conditions, be erupted as voluminous intra-plate eruptions far from active ridge crests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The d15N of surface and down-core sediments spanning the last 20-200 kyr from the entire South China Sea (SCS) ranges only from ~3.0 to ~6.5 per mil, with no correlation with discernible paleoclimatic/oceanographic changes. Detailed profiles of the uppermost sediment column, including fluff samples, indicate a minor diagenetic overprint of 0.3-1.2 per mil at the sediment-water interface. The absence of any correlation with reconstructed (glacial-interglacial) changes in primary production, terrigenous input, and/or sea level related basin configuration is attributed to a complete consumption of nitrate during primary production in this marginal basin during at least the last 140,000 years. This, in turn, implies that the d15N of the nitrate used during primary production remained approximately constant during the last climatic cycle. The proposed scenario infers an unchanged nitrogen isotopic composition of the western Pacific subsurface nitrate between glacial and interglacial stages as well as during terminations and thus constrains proposed changes in the oceanic N inventory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcareous nannofossils were studied by light microscopy in Neogene sedimentary rocks recovered at four sites of the Ocean Drilling Program Leg 127 in the Japan Sea. Nannofossils occur sporadically at all sites, and allow recognition of seven zones and two subzones; four zones in the Holocene to the uppermost Pliocene, and three zones and two subzones in the middle to lower Miocene. Forty-eight nannofossil species are recognized in 95 of the 808 irregularly-spaced samples taken from all the sites. The nannofossil assemblages in the Miocene are more diverse than those in the Holocene to Pliocene sedimentary interval. The greater diversity and the presence of warm-water taxa, such as Sphenolithus and discoasters in the upper lower Miocene to lower middle Miocene, suggest a relatively warm and stable surface-water condition, attributed to an increased supply of warm water from the subtropical western Pacific Ocean. Site 797 in the southern part of the Yamato Basin contains the most complete and the oldest nannofossil record so far reported from the Japan Sea. The lowermost nannofossil zone at this site, the Helicosphaera ampliaperta Zone (15.7-18.4 Ma) gives a minimum age for the Yamato Basin. This age range predates rotation of southwest Japan, an event previously believed to be caused by the opening of the Japan Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 126, we recovered three expanded Pleistocene sections from the active backarc rift (Sumisu Rift) and three expanded Oligocene-Miocene sections from the forearc basin of the Izu-Bonin volcanic island arc. Quantitative analysis of the Pleistocene nannofossils revealed five major assemblages between 0 and LO Ma: Assemblage 1 (Holocene-0.085 Ma) contains dominant Emiliania huxleyi; Assemblage 2 (ca. 0.085-0.275 Ma) contains dominant small Gephyrocapsa and common E. huxleyi and Gephyrocapsa oceanica; Assemblage 3 (ca. 0.275-0.6 Ma) contains dominant Gephyrocapsa caribbeanica; Assemblage 4 (ca. 0.6-0.9 Ma) contains a peak abundance of small Gephyrocapsa in the middle part, and dominant occurrences of two types of G. caribbeanica in the lower and upper parts; and Assemblage 5 (ca. 0.9-1.0 Ma) contains dominant small Gephyrocapsa and common G. caribbeanica and Reticulofenestra asanoi. These assemblages are largely synchronous with similar assemblages recognized from tropical and subtropical regions, and can be used for finer subdivision of the Pleistocene than that based on standard Pleistocene nannofossil datums. The Oligocene-Miocene sections contain several hiatuses: up to 3 m.y. may be missing from the uppermost Oligocene (Zone CP19) at Sites 792 and 793; all of Zone CN2 is missing at Sites 792 and 793; part of Zone CN3 and all of Zone CN4 are missing at Site 792. Biochronology of several nannofossil datums at Leg 126 sites indicate that Sphenolithus distentus, Sphenolithus ciperoensis, Cyclicargolithus floridanus, and Discoaster kugleri have diachronous occurrences compared with other sites in the western Pacific Ocean and Philippine Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents new evidence of when and how the Western Pacific Warm Pool (WPWP) was established in its present form. We analyzed planktic foraminifera, oxygen isotopes, and Mg/Ca ratios in upper Miocene through Pleistocene sediments collected at Deep Sea Drilling Program (DSDP) Site 292. These data were then compared with those reported from Ocean Drilling Program (ODP) Site 806. Both drilling sites are located in the western Pacific Ocean. DSDP Site 292 is located in the northern margin of the modern WPWP and ODP Site 806 near the center of the WPWP. Three stages of development in surface-water conditions are identified in the region using planktic foraminferal data. During the initial stage, from 8.5 to 4.4 Ma, Site 806 was overlain by warm surface water but Site 292 was not, as indicated by the differences in faunal compositions and sea-surface temperature (SST) between the two sites. In addition, the vertical thermal gradient at Site 292 was weak during this period, as indicated by the small differences in the delta18O values between Globigerinoides sacculifer and Pulleniatina spp. During stage two, from 4.4 to 3.6 Ma, the SST at Site 292 rapidly increased to 27 °C, but the vertical thermal gradient had not yet be strengthened, as shown by Mg/Ca ratios and the presence of both mixed-layer dwellers and thermocline dwellers. Finally, a warm mixed layer with a high SST ca. 28 °C and a strong vertical thermal gradient were established at Site 292 by 3.6 Ma. This event is marked by the dominance of mixed-layer dwellers, a high and stable SST, and a larger differences in the delta18O values between G. sacculifer and Pulleniatina spp. Thus, evidence of surface-water evolution in the western Pacific suggests that Site 292 came under the influence of the WPWP at 3.6 Ma. The northward expansion of the WPWP from 4.4 to 3.6 Ma and the establishment of the modern WPWP by 3.6 Ma appear to be closely related to the closure of the Indonesian and Central American seaways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interstitial water samples from Leg 129, Sites 800, 801, and 802 in the Pigafetta and Mariana basins (central western Pacific), have been analyzed for major elements, B, Li, Mn, Sr, and 87Sr/86Sr. At all sites waters show enrichment in Ca and Sr and are depleted in Mg, K, Na, SO4, B, alkalinity, and 87Sr compared to seawater. These changes are related to alteration of basaltic material into secondary smectite and zeolite and recrystallization of biogenic carbonate. Water concentration depth profiles are characterized by breaks due to the presence of barriers to diffusion such as chert layers at Sites 800 and 801 and highly cemented volcanic ash at Site 802. In Site 800, below a chert layer, concentration depth profiles are vertical and reflect slight alteration of volcanic matter, either in situ or in the upper basaltic crust. Release of interlayer water from clay minerals is likely to induce observed Cl depletions. At Site 801, two units act as diffusion barrier and isolate the volcaniclastic sediments from ocean and basement. Diagenetic alteration of volcanic matter generates a chemical signature similar to that at Site 800. Just above the basaltic crust, interstitial waters are less evolved and reflect low alteration of the crust, probably because of the presence in the sediments of layers with low diffusivities. At Site 802, in Miocene tuffs, the chemical evolution generated by diagenetic alteration is extreme (Ca = 130 mmol, 87Sr/86Sr = 0.7042 at 83 meters below seafloor) and is accompanied by an increase of the Cl content (630 mmol) due to water uptake in secondary hydrous phases. Factors that enhance this evolution are a high sediment accumulation rate, high cementation preventing diffusive exchange and the reactive composition of the sediment (basaltic glass). The chemical variation is estimated to result in the alteration of more than 20% of the volcanic matter in a nearly closed system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lower Cretaceous and Jurassic sediments from Ocean Drilling Program Leg 129 (Sites 800, 801, and 802) and Deep Sea Drilling Project Sites 167, 195, 196, and 463 were analyzed for palynomorphs. In contrast to Atlantic occurrences, all Cretaceous pelagic sediments at these sites in the Pacific are barren of preserved palynomorphs. This absence of palynomorphs appears to be independent of facies, sedimentation rate, paleodepth, and paleolatitude. Except for one sample, the dinocyst-bearing sediments also contain spores and pollen grains. The only palynomorphs observed were in redeposited material having sources near former emergent seamounts. Among the dinoflagellate cysts at Site 802, Dingodinium cerviculum, Odontochitina operculata, Canninginopsis colliveri, and Oligosphaeridium complex are the most important species. Based on the presence of these species and their known biostratigraphic ranges, this basal interval of Site 802 is considered to be Aptian/earliest Albian in age. The lack of dinocysts within the Pacific pelagic sediments may be the result of ubiquitous oxygenated bottom waters throughout the Cretaceous or may indicate that open-marine dinoflagellate populations in this ocean did not produce cysts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cretaceous benthic foraminifers from Site 585 in the East Mariana Basin, western Pacific Ocean, provide an environmental and tectonic history of the Basin and the surrounding seamounts. Age diagnostic species (from a fauna of 155 benthic species identified) range from late Aptian to Maestrichtian in age. Displaced species in sediments derived from the tops and flanks of nearby seamounts were deposited sporadically on the Basin floor well below the carbonate compensation depth (CCD) at abyssal depths of 5000 to 6000 m. These depths, characterized by an indigenous assemblage of benthic foraminifers, recrystallized radiolarians, fish debris, and sponge spicules, existed in the Mariana Basin from late Aptian to the present. Early Albian and older edifice-building volcanism had reached the photic zone with associated shallow-water bank or reef environments. By middle Albian, the dominant source areas subsided to outer-neritic to upper-bathyal depths. Major volcanic activity ceased and fine-grained sediments were deposited by distal turbidites, although intermittent volcanism and the influx of rare neritic material continued until the late Albian. By the Cenomanian to Turonian, upper- to middle-bathyal depths were reached by the dominant source areas, and the sediments recovered from this interval include organic carbon-rich layers. Rare benthic foraminifers from the Coniacian-Santonian interval indicate a continuation of dominantly middle-bathyal source areas. A change in sedimentation during the Campanian-Maestrichtian from older zeolitic claystone to abundant chert in the Campanian, and nannofossil chalk and claystone in the Maestrichtian resulted from migration of the site beneath the equatorial productive zone due to northwestward plate motion. The appearance of rare middle-neritic and upper-bathyal species in the Maestrichtian interval associated with volcanogenic debris gives evidence of the remobilization and downslope transport of pelagic deposits due to thermally induced uplift. Episodic redeposition of shallow-water material during the Aptian-Albian was produced by edifice-building volcanism perhaps combined with eustatic lowering of sea level. The Cenomanian-Turonian pulse coincided with a low global sea-level stand as does the transported material during the Coniacian-Santonian. The Maestrichtian pulse was caused by renewed midplate volcanism that extended over a large area of the central Pacific.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogen isotope compositions have been measured on pore waters from sediments of Leg 129 sites in the Pigafetta and East Mariana basins (central western Pacific). Total water (pore + sorbed waters) contents and their dD have been analyzed for three samples that contain smectite but no zeolite so that sorbed water can be attributed to interlayer water. The H budget for pore and total waters implies that interlayer water is 20 per mil to 30 per mil depleted in D compared to pore water. Because the interlayer/total water molar ratio (0.25 to 0.5) in smectitic sediments is very high, interlayer water represents an important reservoir of D-depleted water in sediments. dD depth profiles for pore water at Sites 800 and 801 show breaks related to chert and radiolarite layers and are relatively vertical below. Above these chert units, pore waters are similar to modern seawater but below, they are between -10 per mil and -5.5 per mil. These values could represent little modified pre-Miocene seawater values, which were D-depleted because of the absence of polar caps, and were preserved from diffusive exchange with modern seawater by the relatively impermeable overlying chert layers. At Site 802, dD values of the pore waters show a decrease in the Miocene tuffs from 0 per mil values at the top to -8 per mil at 250 mbsf. Below, dD values are relatively uniform at about -8ë. Miocene tuffs are undergoing low water/rock alteration. A positive covariation of dD and Cl content of pore water in the tuffs suggests that the increase of dD values could result from secondary smectite formation. Low diffusive exchange coupled with D enrichment due to alteration of preglacial waters could explain the observed profile.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New geological and geophysical data on the Amirante Arc, which locates to the south of the Seychelles Islands, are presented. These data were obtained by Pacific Oceanological Institute during the 33-rd cruise of R/V Professor Bogorov in 1990. The Amirante Arc represents a seamount chain, which has submeridional strike and total length about 400 km. To the west of the Amirante Arc there are a deep sea trench and a back-arc basin, i.e. this area is characterized by structural elements associated with the subduction zone of Western Pacific type. According to our data the Amirante Arc is composed by tholeiites of ocean plateau type. This facts are evidences that the Amirante Arc differs from typical Pacific island arcs. This gives an opportunity to distinguish a special type of oceanic structures, i.e. non-volcanic (amagmatic) ridges. The Amirante Ridge has been probably formed as a result of oceanic crust heaping due to horizontal displacements of its blocks in the process of spreding ridge formation in the Indian Ocean during Cretaceous-Paleogene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One hundred and sixty core samples were analyzed from Hole 832B to evaluate planktonic foraminiferal datum levels, and to zone and correlate the borehole succession. A total of 32 biostratigraphic events were recognized in the interval from Core 134-832B-59R through 134-832B-73R (702.49 through 846.4 meters below seafloor [mbsf]). These include 17 first appearance datum levels (FAD), 10 last appearance datum levels (LAD), and 5 coiling-change events in trochospiral species. The studied succession has been subdivided into nine planktonic foraminiferal zones (viz. downsequence N.22, N.21, N.20, N.19, N.18, N.17B, N.17A-N.16, N.15, N.8). The zonal index species occur in the expected stratigraphic order for zonal correlation, but some of the zonal boundaries may be diachronous compared to other localities in the western Pacific region. The FAD of Globorotalia (Truncorotalia) truncatulinoides (d' Orbigny) at 714.10 mbsf defines the boundary between the Zone N.22 and N.21; the boundary between Zones N.21 and N.20 at 741.73 mbsf is marked by the FAD of Globorotalia (Truncorotalia) tosaensis Takayanagi and Saito. The lower boundary of Zone N.20 is placed at 747.65 mbsf, based on the FAD of Globorotalia (Truncorotalia) crassaformis s.s. (Galloway and Wissler); the FAD of Sphaeroidinella dehiscens (Parker and Jones) at 756.61 mbsf defines the boundary between Zones N.18 and N.19. The FAD of Globorotalia (Globorotalia) tumida tumida (Brady) at 811.15 mbsf marks the boundary between Zones N.18 and N.17B. The boundary between Zones N.17B and N.17Ais placed at 843.52 mbsf, based on the FAD of Pulleniatina primalis Banner and Blow. A change in depositional conditions occurs at 846.4 mbsf just below the Zone N.17B lower boundary and is marked by the first appearance of abundant planktonic foraminifers in the region. The interval between 849.13 and 856.1 mbsf is placed in undifferentiated Zones N.17A and N.16, based on the rare occurrence of Neogloboquadrina acostaensis (Blow). The sparsely fossiliferous volcanic sandstone unit between 934.19 and 955.67 mbsf is positioned within Zone N.15 based on the presence of Globigerina (Zeaglobigerina) nepenthes Todd and Globigerinoides (Zeaglobigerina) druryi Arkers, and absence of N. acostaensis and Globorotalia (Jenkinsella) siakensis LeRoy. An unconformity between 955.67 and 971.80 mbsf may explain the absence of Zones N.14 through N.9. Basal Zone N.8 is recognized at 971.80 to 1008.60 mbsf by the presence of Globigerinoides sicanus De Stefani and the absence of Praeorbulina and Orbulina spp. The age of the succession between 702.49 and 1008.6 mbsf extends from the latest Pliocene or earliest Pleistocene (Zone N.22) to the earliest middle Miocene (Zone N.8). Among the datum levels evaluated here, the following events are considered to be the most reliable for time correlation in the studied region: the FADs of G. (T.) truncatulinoides, G. (T.) tosaensis, G. (T.) crassaformis, S. dehiscens, G. conglobatus (Brady), G. (G.) tumida tumida, and P. primalis; and the LADs of Globorotalia (Menardella) multicamerata Cushman and Jarvis, and Dentoglobigerina altispira altispira (Cushman and Jarvis). Application of a chronometric scale to part of the succession, suggests that the interval of calcareous sediment between 702.49 and 846.4 mbsf accumulated at about 30 m/m.y.