913 resultados para Weakly Cauchy Sequence


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The line spectral frequency (LSF) of a causal finite length sequence is a frequency at which the spectrum of the sequence annihilates or the magnitude spectrum has a spectral null. A causal finite-length sequencewith (L + 1) samples having exactly L-LSFs, is referred as an Annihilating (AH) sequence. Using some spectral properties of finite-length sequences, and some model parameters, we develop spectral decomposition structures, which are used to translate any finite-length sequence to an equivalent set of AH-sequences defined by LSFs and some complex constants. This alternate representation format of any finite-length sequence is referred as its LSF-Model. For a finite-length sequence, one can obtain multiple LSF-Models by varying the model parameters. The LSF-Model, in time domain can be used to synthesize any arbitrary causal finite-length sequence in terms of its characteristic AH-sequences. In the frequency domain, the LSF-Model can be used to obtain the spectral samples of the sequence as a linear combination of spectra of its characteristic AH-sequences. We also summarize the utility of the LSF-Model in practical discrete signal processing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The notion of optimization is inherent in protein design. A long linear chain of twenty types of amino acid residues are known to fold to a 3-D conformation that minimizes the combined inter-residue energy interactions. There are two distinct protein design problems, viz. predicting the folded structure from a given sequence of amino acid monomers (folding problem) and determining a sequence for a given folded structure (inverse folding problem). These two problems have much similarity to engineering structural analysis and structural optimization problems respectively. In the folding problem, a protein chain with a given sequence folds to a conformation, called a native state, which has a unique global minimum energy value when compared to all other unfolded conformations. This involves a search in the conformation space. This is somewhat akin to the principle of minimum potential energy that determines the deformed static equilibrium configuration of an elastic structure of given topology, shape, and size that is subjected to certain boundary conditions. In the inverse-folding problem, one has to design a sequence with some objectives (having a specific feature of the folded structure, docking with another protein, etc.) and constraints (sequence being fixed in some portion, a particular composition of amino acid types, etc.) while obtaining a sequence that would fold to the desired conformation satisfying the criteria of folding. This requires a search in the sequence space. This is similar to structural optimization in the design-variable space wherein a certain feature of structural response is optimized subject to some constraints while satisfying the governing static or dynamic equilibrium equations. Based on this similarity, in this work we apply the topology optimization methods to protein design, discuss modeling issues and present some initial results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

32P labelled 5S RNA isolated fromMycobacterium smegmatis was digested withT 1 and pancreatic ribonucleases separately and fingerprinted by two dimensional high voltage electrophoresis on thin-layer DEAE-cellulose plates. The radioactive spots were sequenced and their molar yields were determined. The chain length of the 5S RNA was found to be 120. It showed resemblances to both prokaryotic and eukaryotic 5S RNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of spermine in inducing A-DNA conformation in deoxyoligonucleotides has been studied using CCGG and GGCC as model sequences. It has been found that while CCGG adopts an alternating B-DNA conformation in low salt solution at low temperature, addition of spermine to this medium induces a B --greater than A transition. In contrast, the A-DNA-like structure of GGCC in low salt solution at low temperature does not change under the influence of spermine. This suggests a sequence-dependent behaviour of spermine. Further these results suggest that the A-DNA conformation observed in the crystals of d(iCCGG) and d(GGCC)2 might have been due to the presence of spermine in the crystallization cocktail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geometric phases have been used in NMR to implement controlled phase shift gates for quantum-information processing, only in weakly coupled systems in which the individual spins can be identified as qubits. In this work, we implement controlled phase shift gates in strongly coupled systems by using nonadiabatic geometric phases, obtained by evolving the magnetization of fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The dynamical phase accumulated during the evolution of the subspaces is refocused by a spin echo pulse sequence and by setting the delay of transition selective pulses such that the evolution under the homonuclear coupling makes a complete 2 pi rotation. A detailed theoretical explanation of nonadiabatic geometric phases in NMR is given by using single transition operators. Controlled phase shift gates, two qubit Deutsch-Jozsa algorithm, and parity algorithm in a qubit-qutrit system have been implemented in various strongly dipolar coupled systems obtained by orienting the molecules in liquid crystal media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sequence specific requirement for B----Z transition in solution was examined in d(CGTGCGCACG), d(CGTACGTACG), d(ACGTACGT) in presence of various Z-inducing factors. Conformational studies show that inspite of the alternating nature of purines and pyrimidines, the aforementioned sequences do not undergo B----Z transition under the influence of NaCl, hexamine cobalt chloride and ethanol. A comparison with the crystal structures of an assorted array of purine and pyrimidine sequences show that the sequence requirement for B----Z transition is much more stringent in solution as compared to the solid state. The disruptive influence of AT base pairs in B to Z transition is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication K. R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R-3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 x 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of dipolar cross correlation in 1H---1H nuclear Overhauser effect experiments is investigated by detailed calculation in an ABX spin system. It is found that in weakly coupled spin systems, the cross-correlation effects are limited to single-quantum transition probabilities and decrease in magnitude as ωτc increases. Strong coupling, however, mixes the states and the cross correlations affect the zero-quantum and double-quantum transition probabilities as well. The effect of cross correlation in steady-state and transient NOE experiments is studied as a function of strong coupling and ωτc. The results for steady-state NOE experiments are calculated analytically and those for transient NOE experiments are calculated numerically. The NOE values for the A and B spins have been calculated by assuming nonselective perturbation of all the transitions of the X spin. A significant effect of cross correlation is found in transient NOE experiments of weakly as well as strongly coupled spins when the multiplets are resolved. Cross correlation manifests itself largely as a multiplet effect in the transient NOE of weakly coupled spins for nonselective perturbation of all X transitions. This effect disappears for a measuring pulse of 90° or when the multiplets are not resolved. For steady-state experiments, the effect of cross correlation is analytically zero for weakly coupled spins and small for strongly coupled spins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3' terminal 1255 nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3' terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addiition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the sequence of amino acid residues in a heteropolymer chain of a protein with a given conformation is a discrete combinatorial problem that is not generally amenable for gradient-based continuous optimization algorithms. In this paper we present a new approach to this problem using continuous models. In this modeling, continuous "state functions" are proposed to designate the type of each residue in the chain. Such a continuous model helps define a continuous sequence space in which a chosen criterion is optimized to find the most appropriate sequence. Searching a continuous sequence space using a deterministic optimization algorithm makes it possible to find the optimal sequences with much less computation than many other approaches. The computational efficiency of this method is further improved by combining it with a graph spectral method, which explicitly takes into account the topology of the desired conformation and also helps make the combined method more robust. The continuous modeling used here appears to have additional advantages in mimicking the folding pathways and in creating the energy landscapes that help find sequences with high stability and kinetic accessibility. To illustrate the new approach, a widely used simplifying assumption is made by considering only two types of residues: hydrophobic (H) and polar (P). Self-avoiding compact lattice models are used to validate the method with known results in the literature and data that can be practically obtained by exhaustive enumeration on a desktop computer. We also present examples of sequence design for the HP models of some real proteins, which are solved in less than five minutes on a single-processor desktop computer Some open issues and future extensions are noted.