994 resultados para Water rights.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La présente contribution examine les fondements normatifs ainsi que les implications éthiques du droit à l’eau, tel qu’il fut reconnu en 2002 par le comité onusien des droits économiques, sociaux et culturels. Il sera défendu que le droit à l’eau potable peut être justifié en tant que droit moral fondamental, de par son caractère indispensable en vue de la garantie des conditions basiques de survie. Cet état de fait, cependant, s’avère moins évident au vue d’un droit à l’eau d’usage non-domestique. Ici, la discussion se rapproche des débats accompagnant le concept beaucoup plus complexe des droits sociaux et économiques. Par rapport à ce groupe de droits, la question de l’allocation est des plus controversées: à qui incombe-t-il de garantir leur respect? Dans le but d’éviter cette problématique d’allocation, le présent essai soulèvera la question de savoir, si la limitation de l’accès à l’eau peut être conçue comme une violation d’autres droits moraux: bien qu’il y ait des cas où des entreprises transnationales déploient des activités nuisibles à l’égard des populations pauvres en polluant sciemment leurs ressources en eau ou en initiant et en exécutant des stratégies de privatisation les privant de leurs droits, la crise globale de l’eau ne saura être rattachée uniquement aux effets de la mondialisation. Plutôt, l’on reconnaîtra la nécessité d’efforts positifs et soutenus de la part des pays développés en vue de la réalisation d’un approvisionnement suffisant en eau pour tous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imprisonment is the most common method of punishment resorted to by almost all legal systems.The new theories of crime causation propounded in the latter half of the nineteenth century gave rise to the feeling that the prisons could be used as appropriate institutions for reforming the offenders. It called for individualisation of punishment.As a result of international movements for humanisation of prisons the judiciary' in tine common law countries started taking active interest in prisoner's treatment.Various studies reveal that much has been done in America to improve the lot of prisoners and to treat them as human beings.The courts there have gone to the extent of saying that there is no iron curtain between a prisoner and the constitution. Most of the rights available to citizens except those which they cannot enjoy due to the conditions of incarceration have also been granted to prisoner.In India also the judiciary has come forward to protect the rights of the prisoners.Maneka Gandhi is a turning point in prisoner's rights.The repeated intervention of courts in prison administration project the view that prisoners have been denied the basic human rights.The High Courts and the Supreme Court of India have been gradually exercising jurisdiction ixl assuming prison justice, including improving the quality of food and amenities, payment of wages and appropriate standards of medical care. Access to courts must be made easier to the aggrieved prisoners.The government should come forward along with some public spirited citizens and voluntary organisations to form a "discharged prisoner“ aid society. The society should exploit opportunities for rehabilitation of prisoners after their release.Most of the prison buildings in the State of Kerala are ill-equipped, ill furnished and without proper ventilation or sanitation and with insufficient water supply arrangements.In India prisoners and prisons today are governed by the old central legislations like Prisons Act l894 Prisoners Act 1900 and the Transfer of Prisoners Act 1950.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The freshwaters of the Mersey Basin have been seriously polluted for over 200 years. Anecdotal evidence suggests that the water quality was relatively clean before the start of the Industrial Revolution. The development of the cotton and chemical industries increased the pollution load to rivers, and consequently a decline in biota supported by the water was observed. Industrial prosperity led to a rapid population increase and an increase in domestic effluent. Poor treatment of this waste meant that it was a significant pollutant. As industry intensified during the 19th century, the mix of pollutants grew more complex. Eventually, in the 1980s, the government acknowledged the problem and more effort was made to improve the water quality. Knowledge of social and economic history, as well as anecdotal evidence, has been used in this paper to extrapolate the changes in water quality that occurred. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a review is undertaken of the major models currently in use for describing water quality in freshwater river systems. The number of existing models is large because the various studies of water quality in rivers around the world have often resulted in the construction of new 'bespoke' models designed for the particular situation of that study. However, it is worth considering models that are already available, since an existing model, suitable for the purposes of the study, will save a great deal of work and may already have been established within regulatory and legal frameworks. The models chosen here are SIMCAT, TOMCAT, QUAL2E, QUASAR, MIKE-11 and ISIS, and the potential for each model is examined in relation to the issue of simulating dissolved oxygen (DO) in lowland rivers. These models have been developed for particular purposes and this review shows that no one model can provide all of the functionality required. Furthermore, all of the models contain assumptions and limitations that need to be understood if meaningful interpretations of the model simulations are to. be made. The work is concluded with the view that it is unfair to set one model against another in terms of broad applicability, but that a model of intermediate complexity, such as QUASAR, is generally well suited to simulate DO in river systems. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates phosphorus (P) transport and transformation dynamics in two contrasting sub-catchments of the River Kennel, England. Samples were collected daily under baseflow and hourly under stormflow conditions using autosamplers for 2 years and analysed for a range of determinands (full P fractionation, suspended sediment (SS), cations, pH, alkalinity, temperature and oxygen). Concentrations of SRP, SUP, PP and SS were higher in the flashy River Enborne (means of 0.186, 0.071, 0.101 and 34 mg l(-1), respectively) than the groundwater-fed River Lambourn (0.079, 0.057, 0.028 and 9 mg l(-1), respectively). A seasonal trend in the daily P dataset was evident, with lower concentrations during intermediate flows and the spring (caused by a dilution effect and macrophyte uptake) than during baseflow conditions. However, in the hourly P dataset, highest concentrations were observed during storm events in the autumn and winter (reflecting higher scour with increased capacity to entrain particles). Storm events were more significant in contributing to the total P load in the River Enborne than the River Lambourn, especially during August to October, when dry antecedent conditions were observed in the catchment. Re-suspension of P-rich sediment that accumulated within the channel during summer low flows might account for these observations. It is suggested that a P-calcite co-precipitation mechanism was operating during summer in the River Lambourn, while adsorption by metal oxyhydroxide groups was an important mechanism controlling P fractionation in the River Enborne. The influence of flow conditions and channel storage/release mechanisms on P dynamics in these two lowland rivers is assessed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interpretation of soil water dynamics under drip irrigation systems is relevant for crop production as well as on water use and management. In this study a three-dimensional representation of the flow of water under drip irrigation is presented. The work includes analysis of the water balance at point scale as well as area-average, exploring uncertainties in water balance estimations depending on the number of locations sampled. The water flow was monitored by detailed profile water content measurements before irrigation, after irrigation and 24 h later with a dense array of soil moisture access tubes radially distributed around selected drippers. The objective was to develop a methodology that could be used on selected occasions to obtain 'snap shots' of the detailed three-dimensional patterns of soil moisture. Such patterns are likely to be very complex, as spatial variability will be induced for a number of reasons, such as strong horizontal gradients in soil moisture, variations between individual sources in the amount of water applied and spatial variability is soil hydraulic properties. Results are compared with a widely used numerical model, Hydrus-2D. The observed dynamic of the water content distribution is in good agreement with model simulations, although some discrepancies concerning the horizontal distribution of the irrigation bulb are noted due to soil heterogeneity. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent reports show that biogeochemical processes continue when the soil is frozen, but are limited by water availability. However, there is little knowledge about the interactive effects of soil and environmental variables on amounts of unfrozen water in frozen soils. The aims of this study were to determine the contributions of matric and osmotic potentials to the unfrozen water content of frozen soil. We determined the effects of matric and osmotic potential on unfrozen water contents of frozen mineral soil fractions (ranging from coarse sand to fine silt) at -7 degrees C, and estimated the contributions of these potentials to liquid water contents in samples from organic surface layers of boreal soils frozen at -4 degrees C. In the mineral soil fractions the unfrozen water contents appeared to be governed solely by the osmotic potential, but in the humus layers of the sampled boreal soils both the osmotic and matric potentials control unfrozen water content, with osmotic potential contributing 20 to 69% of the total water potential. We also determined pore size equivalents, where unfrozen water resides at -4 degrees C, and found a strong correlation between these equivalents and microbial CO2 production. The larger the pores in which the unfrozen water is found the larger the microbial activity that can be sustained. The osmotic potential may therefore be a key determinant of unfrozen water and carbon dynamics in frozen soil. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water table response to rainfall was investigated at six sites in the Upper, Middle and Lower Chalk of southern England. Daily time series of rainfall and borehole water level were cross-corretated to investigate seasonal variations in groundwater-level response times, based on periods of 3-month duration. The time tags (in days) yielding significant correlations were compared with the average unsaturated zone thickness during each 3-month period. In general, for cases when the unsaturated zone was greater than 18 m thick, the time tag for a significant water-level response increased rapidly once the depth to the water table exceeded a critical value, which varied from site to site. For shallower water tables, a linear relationship between the depth to the water table and the water-level response time was evident. The observed variations in response time can only be partially accounted for using a diffusive model for propagation through the unsaturated matrix, suggesting that some fissure flow was occurring. The majority of rapid responses were observed during the winter/spring recharge period, when the unsaturated zone is thinnest and the unsaturated zone moisture content is highest, and were more likely to occur when the rainfall intensity exceeded 5 mm/day. At some sites, a very rapid response within 24 h of rainfall was observed in addition to the longer term responses even when the unsaturated zone was up to 64 m thick. This response was generally associated with the autumn period. The results of the cross-correlation analysis provide statistical support for the presence of fissure flow and for the contribution of multiple pathways through the unsaturated zone to groundwater recharge. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In January 1992, there was a major pollutant event for the River Canon and downstream with its confluence to the River Fal and the Fal estuary in the west Cornwall. This incident was associated with the discharge of several million gallons of highly polluted water from the abandoned Wheal Jane tin mine that also extracted Ag, Cu and Zn ore. Later that year, the Centre for Ecology and Hydrology (CBH; then Institute of Hydrology) Wallingford undertook daily monitoring of the River Canon for a range of major, minor and trace elements to assess the nature and the dynamics of the pollutant discharges. These data cover an 18-month period when there remained major water-quality problems after the initial phase of surface water contamination. Here, a summary is provided of the water quality found, as a backdrop to set against subsequent remediation. Two types of water-quality determinant grouping were observed. The first type comprises the determinants B, Cs, Ca, Li, K, Na, SO4, Rb and Sr, and their concentrations are positively correlated with each other but inversely correlated with flow. This type of water-quality determinant shows variations in concentration that broadly link to the normal hydrogeochemical processes within the catchment, with limited confounding issues associated with mine drainage. The second type of water-quality determinant comprises Al, Be, Cd, Ce, Co, Cu, Fe, La, Pb, Pr, Nd, Ni, Si, Sb, U, Y and Zn, and concentrations for all this group are positively correlated. The determinants in this second group all have concentrations that are negatively correlated with pH. This group links primarily to pollutant mine discharge. The water-quality variations in the River Camon are described in relation to these two distinct hydrogeochemical groupings. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water quality models generally require a relatively large number of parameters to define their functional relationships, and since prior information on parameter values is limited, these are commonly defined by fitting the model to observed data. In this paper, the identifiability of water quality parameters and the associated uncertainty in model simulations are investigated. A modification to the water quality model `Quality Simulation Along River Systems' is presented in which an improved flow component is used within the existing water quality model framework. The performance of the model is evaluated in an application to the Bedford Ouse river, UK, using a Monte-Carlo analysis toolbox. The essential framework of the model proved to be sound, and calibration and validation performance was generally good. However some supposedly important water quality parameters associated with algal activity were found to be completely insensitive, and hence non-identifiable, within the model structure, while others (nitrification and sedimentation) had optimum values at or close to zero, indicating that those processes were not detectable from the data set examined. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the River Lambourn, a Chalk river-system in southern England. The model's abilities to simulate the long-term trend and seasonal patterns in observed stream water nitrate concentrations from 1920 to 2003 were tested. This is the first time a semi-distributed, daily time-step model has been applied to simulate such a long time period and then used to calculate detailed catchment nutrient budgets which span the conversion of pasture to arable during the late 1930s and 1940s. Thus, this work goes beyond source apportionment and looks to demonstrate how such simulations can be used to assess the state of the catchment and develop an understanding of system behaviour. The mass-balance results from 1921, 1922, 1991, 2001 and 2002 are presented and those for 1991 are compared to other modelled and literature values of loads associated with nitrogen soil processes and export. The variations highlighted the problem of comparing modelled fluxes with point measurements but proved useful for identifying the most poorly understood inputs and processes thereby providing an assessment of input data and model structural uncertainty. The modelled terrestrial and instream mass-balances also highlight the importance of the hydrological conditions in pollutant transport. Between 1922 and 2002, increased inputs of nitrogen from fertiliser, livestock and deposition have altered the nitrogen balance with a shift from possible reduction in soil fertility but little environmental impact in 1922, to a situation of nitrogen accumulation in the soil, groundwater and instream biota in 2002. In 1922 and 2002 it was estimated that approximately 2 and 18 kg N ha(-1) yr(-1) respectively were exported from the land to the stream. The utility of the approach and further considerations for the best use of models are discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated approach to climate change impact assessment is explored by linking established models of regional climate (SDSM), water resources (CATCHMOD) and water quality (INCA) within a single framework. A case study of the River Kennet illustrates how the system can be used to investigate aspects of climate change uncertainty, deployable water resources, and water quality dynamics in upper and lower reaches of the drainage network. The results confirm the large uncertainty in climate change scenarios and freshwater impacts due to the choice of general circulation model (GCM). This uncertainty is shown to be greatest during summer months as evidenced by large variations between GCM-derived projections of future tow river flows, deployable yield from groundwater, severity of nutrient flushing episodes, and Long-term trends in surface water quality. Other impacts arising from agricultural land-use reform or delivery of EU Water Framework Directive objectives under climate change could be evaluated using the same framework. (c) 2006 Elsevier B.V. All rights reserved.