940 resultados para Water irrigation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the critical problems currently being faced by agriculture industry in developing nations is the alarming rate of groundwater depletion. Irrigation accounts for over 70% of the total groundwater withdrawn everyday. Compounding this issue is the use of polluting diesel generators to pump groundwater for irrigation. This has made irrigation not only the biggest consumer of groundwater but also one of the major contributors to green house gases. The aim of this thesis is to present a solution to the energy-water nexus. To make agriculture less dependent on fossil fuels, the use of a solar-powered Stirling engine as the power generator for on-farm energy needs is discussed. The Stirling cycle is revisited and practical and ideal Stirling cycles are compared. Based on agricultural needs and financial constraints faced by farmers in developing countries, the use of a Fresnel lens as a solar-concentrator and a Beta-type Stirling engine unit is suggested for sustainable power generation on the farms. To reduce the groundwater consumption and to make irrigation more sustainable, the conceptual idea of using a Stirling engine in drip irrigation is presented. To tackle the shortage of over 37 million tonnes of cold-storage in India, the idea of cost-effective solar-powered on-farm cold storage unit is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The following brief is to ensure standard criteria and format are used for the scoping and environmental assessment of water resources projects leading to the production of an environmental report or Environmental Statement. This volume is one of a series giving guidance on water resources projects. The water resources projects will predominantly comprise drought orders and permits, time limited and permanent licences. Smaller projects, such as spray irrigation licences, will not require an environmental assessment. This document forms the basis for discussions between the Environment Agency North East Region, consultees and the applicant. The process aims to produce a thorough assessment. Each section addresses consecutive elements of the assessment process. Section 2 outlines the structure for a scoping document, section 3 outlines the structure for an Environmental Statement and section 4 gives guidance on the role of an Environmental Action Plan. Appendices 1 and 2 should be used in conjunction with the scoping process and cover a wide range of aspects. However, some projects may not require all of them to be included, whilst for others, the inclusion of additional factors may be appropriate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes the creation and assessment of benthic habitat maps for shallow-water (<30m) marine environments of the Guánica/Parguera and Finca Belvedere Natural Reserve in southwest Puerto Rico. The objective was to provide spatially-explicit information on the habitat types, biological cover and live coral cover of the region’s coral reef ecosystem. These fine-scale habitat maps, generated by interpretation of 2010 satellite imagery, provide an update to NOAA’s previous digital maps of the U.S. Caribbean (Kendall et al., 2001) for these areas. Updated shallow-water benthic habitat maps for the Guánica/Parguera region are timely in light of ongoing restoration efforts in the Guánica Bay watershed. The bay is served directly by one river, the Rio Loco, which flows intermittently and more frequently during the rainy season. The watershed has gone through a series of manipulations and alterations in past decades, mainly associated with agricultural practices, including irrigation systems, in the upper watershed. The Guánica Lagoon, previously situated to the north of the bay, was historically the largest freshwater lagoon in Puerto Rico and served as a natural filter and sediment sink prior to the discharge of the Rio Loco into the Bay. Following alterations by the Southwest Water Project in the 1950s, the Lagoon’s adjacent wetland system was ditched and drained; no longer filtering and trapping sediment from the Rio Loco. Land use in the Guánica Bay/Rio Loco watershed has also gone through several changes (CWP, 2008). Similar to much of Puerto Rico, the area was largely deforested for sugar cane cultivation in the 1800s, although reforestation of some areas occurred following the cessation of sugar cane production (Warne et al., 2005). The northern area of the watershed is generally mountainous and is characterized by a mix of forested and agricultural lands, particularly coffee plantations. Closer to the coast, the Lajas Valley Agricultural Reserve extends north of Guánica Bay to the southwest corner of the island. The land use practices and watershed changes outlined above have resulted in large amounts of sediment being distributed in the Rio Loco river valley (CWP, 2008). Storm events and seasonal flooding also transport large amounts of sediment to the coastal waters. The threats of upstream watershed practices to coral reefs and the nearshore marine environment have been gaining recognition. Guánica Bay, and the adjacent marine waters, has been identified as a “management priority area” by NOAA’s Coral Reef Conservation Program (CRCP, 2012). In a recent Guánica Bay watershed management plan, several critical issues were outlined in regards to land-based sources of pollution (LBSP; CWP, 2008). These include: upland erosion from coffee agriculture, filling of reservoirs with sediment, in-stream channel erosion, loss of historical Guánica lagoon, legacy contaminants and sewage treatment (CWP, 2008). The plan recommended several management actions that could be taken to reduce impacts of LBSP, which form the basis of Guánica watershed restoration efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is a contribution to an assessment of the current status of agriculture in Cambodia, focusing on the linkages between agriculture and water, mainly in the form of irrigation. It seeks to view current government policies on agriculture and irrigation in the context of experiences on the ground, as communicated through the many field studies that cover varied aspects of performance in the agriculture sector and irrigation schemes. In an effort to identify future research areas, this review examines the status quo, and connects or disconnects with stated policy through a broad lens to capture strengths and challenges across crop production, irrigation management and post-harvest contexts. It places irrigation under scrutiny in terms of its value as a major area of government expenditure in recent years, and asks whether it presents the best potential for future gains in productivity, when compared with the prospects offered by investments in other aspects of agriculture. The fieldwork and review of current literature that form the basis of this report were undertaken at the request of, and partly funded by, the Australian Centre for International Agricultural Research (ACIAR). It is also intended to contribute knowledge to the CGIAR Research Program on Aquatic Agricultural Systems (AAS) led by WorldFish, who co-funded the activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of experiments conducted on a pond dyke (655m²) in the Wastewater Aquaculture Division of the Central Institute of Freshwater Aquaculture, Rahara, during 1992-93 for maximising production through optimum utilisation of resources are communicated. Round the year intensive cultivation of okra (Abelmoschus esculentus), amaranth (Amaranthus gangeticus and A. viridus), water-bind weed (Ipomea aquatica), Indian spinach (Basella rubra), radish (Raphanus sativum), amaranth (Amaranthus viridis), cauliflower (Brassica oleracia var. votrytis), cabbage (Brassica oleracia var. capitota) and papaya (Carica papaya) was undertaken using the treated sewage water from fish ponds for irrigation. The pond dyke yielded 5,626.5 kg vegetable which worked out to 85.9 tons per ha per year. Multiple cropping with these vegetables excluding papaya on a 460 m² dyke recorded a production of 4,926.5 kg at the rate of 107.1t per ha/yr. An improved yearly net return of about 35% over investment could be achieved through the selection of highly productive and pest resistant vegetable crops of longer duration for integration into the system. Introduction of this type of integrated farming would enhance the overall productivity and returns from farming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inland fresh waters of the island can be roughly divided into the following as far as fish production is concerned: (a) Perennial shallow irrigation reservoirs of the low-country, comprising about 120,000 acres. (b) " Villus" or flood lakes of the low country many of which are perennial, comprising about 30,000 acres. (c) Seasonal village tanks, mainly in the low-country, comprising about 30,000 acres. (d) Deep reservoirs (irrigation as well as hydro-electric) occurring in up-country and low-country comprising about 50,000 acres. (e) Rivers and streams comprising about 20,000 acres. The total area of all these waters is about 250,000 acres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of selection of species for culture according to the ecological niches and fish food organisms is highlighted with respect to the Fox Sagar, an irrigation take. The tank was infested with submerged vegetation as well as minnows and weed fishes, which rendered the tank unsuitable for the culture of Indian major carps. The tank was stocked with 8000 fingerlings of Channa marulius and C. striatus during 1981 by the local fisherman co-operative society. Only partial harvest was possible during 1982 because of high water level. The final harvest was in April-May, 1983. The yield obtained was 3640 kg during the culture period of about 20 months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaculture systems are an integral element of rural development and therefore should be environment friendly as well as socially and economically designed. From the economic standpoint, one of the major constraints for the development of sustainable aquaculture includes externalities generated by competition in access to a limited resource. This study was conducted as an investigation into the water requirement for the hatchery and nursery production phases of common carp, Cyprinus carpio (Linnaeus, 1758) at the Maharashtra State Fish Seed Farm at Khopoli in Raigad Dist. of Maharashtra during the winter months from November to February. The water budgeting study involves the quantification of water used in every stage of production in hatchery and nursery systems and aimed at becoming a foundation for the minimization of water during production without affecting the yield; thereby conserving water and upholding the theme of sustainable aquaculture. The total water used in a single operation cycle was estimated to be 11,25,040 L [sic]. Out of the total water consumed, 4.74% water was used in the pre-operational management steps, 4.48% was consumed during breeding, 62.72% was consumed in the hatching phase, 21.50% was used for hatchery rearing and 6.56% was consumed during conditioning. In the nursery ponds, the water gain was primarily the regulated inflow coming through the irrigation channel. The total quantum of water used in the nursery rearing was 31,60,800 L [sic]. The initial filling and regulated inflow formed 42.60% and 57.40% respectively of water gain, while evaporation, seepage and discharge contributed 20.71%, 36.46% and 42.82% respectively to the water loss. The total water expended for the entire operation was 1,21,61,120 L [sic]. Water expense occurred to produce a single spawn in the hatchery system was calculated and found to be 0.56 L while the water expended to produce one fry was calculated as 4.86 L. The study fulfills the hydrological equation described by Winter (1981) and Boyd (1985). It also validates the water budget simulation model that can be used for forecasting water requirements for aquaculture ponds (Nath and Bolte, 1998).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the seawater irrigation system (SIS) is to clean up shrimp pond effluent and provide high quality seawater for shrimp farming. The system has 3 components: water intake; treatment reservoir and discharge system. There are criteria for site selection because shrimp farmers are required to form associations so they can work closely together. The construction site must be on the coastal area outside a mangrove forest and located away from a production agricultural area. All construction sites must have undergone an environmental impact assessment, and should be located on the area listed in Thailand's Coastal Zone Management Plan. Five SIS projects, which cover a culture area of 6,500 ha with 1,300 farmers (families), were completed and operated. The Department of Fisheries has planned for another 28 projects, that will cover almost 44,000 ha of culture area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Removal efficiencies on xenobiotics from polluted water in a twin-shaped constructed wetland consisting of a vertical flow chamber with the crop plant Colocasia esculenta L. Schott and a reverse vertical flow one with Ischaemum aristatum var. glaucum Honda, were assessed by chemical analysis and bioassays. After a four-month period of application, removal efficiencies of the applied pesticides parathion and omethoate were 100%, with no detectable parathion and omethoate in the effluent. For the applied herbicides, the decontamination was less efficient with removal efficiencies of 36% and 0% for 4-chloro-2-methyl-phenoxyacetic acid and dicamba, respectively. As shown by toxicity assay with duckweed Lemna minor L., growth retardation may occur if the water treated for herbicide removal is used in irrigation of sensitive cultivars in agriculture or horticulture. In contrast to I. aristatum var. glaucum Honda, the crop C esculenta L. Schott has a high yield in biomass production as a valuable source of renewable energy. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feasibility of an inexpensive wastewater treatment system is evaluated in this study. An integrated biological pond system was operated for more than 3 years to purify the wastewater from a medium-sized city, Central China. The experiment was conducted in 3 phases with different treatment combinations for testing their purification efficiencies. The pond system was divided into 3 functional regions: influent purification, effluent upgrading and multi-utilization. These regions were further divided into several zones and subzones. Various kinds of aquatic organisms, including macrophytes, algae, microorganisms and zooplankton, were effectively cooperating in the wastewater treatment in this system. The system attained high reductions of BOD5, COD, TSS, TN, TP and other pollutants. The purification efficiencies of this system were higher than those of most traditional oxidation ponds or ordinary macrophyte ponds. The mutagenic effect and numbers of bacteria and viruses declined significantly during the process of purification. After the wastewater flowed through the upgrading zone, the concentrations of pollutants and algae evidently decreased. Plant harvesting did not yield dramatic effects on reductions of the main pollutants, though it did significantly affect the biomass productivity of the macrophytes. The effluent from this system could be utilized in irrigation and aquaculture. Some aquatic products were harvested from this system and some biomass was utilized for food, fertilizer, fodder and some other uses. The wastewater was reclaimed for various purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable water use is seriously compromised in the North China Plain (NCP) due to the huge water requirements of agriculture, the largest use of water resources. An integrated approach which combines the ecosystem model with emergy analysis is presented to determine the optimum quantity of irrigation for sustainable development in irrigated cropping systems. Since the traditional emergy method pays little attention to the dynamic interaction among components of the ecological system and dynamic emergy accounting is in its infancy, it is hard to evaluate the cropping system in hypothetical situations or in response to specific changes. In order to solve this problem, an ecosystem model (Vegetation Interface Processes (VIP) model) is introduced for emergy analysis to describe the production processes. Some raw data, collected by investigating or observing in conventional emergy analysis, may be calculated by the VIP model in the new approach. To demonstrate the advantage of this new approach, we use it to assess the wheat-maize rotation cropping system at different irrigation levels and derive the optimum quantity of irrigation according to the index of ecosystem sustainable development in NCP. The results show, the optimum quantity of irrigation in this region should be 240-330 mm per year in the wheat system and no irrigation in the maize system, because with this quantity of irrigation the rotation crop system reveals: best efficiency in energy transformation (transformity = 6.05E + 4 sej/J); highest sustainability (renewability = 25%); lowest environmental impact (environmental loading ratio = 3.5) and the greatest sustainability index (Emergy Sustainability Index = 0.47) compared with the system in other irrigation amounts. This study demonstrates that application of the new approach is broader than the conventional emergy analysis and the new approach is helpful in optimizing resources allocation, resource-savings and maintaining agricultural sustainability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crop management practice of alternate wetting and drying (AWD) is being promoted by IRRI and the national research and extension program in Bangladesh and other parts of the world as a water-saving irrigation practice that reduces the environmental impact of dry season rice production through decreased water usage, and potentially increases yield. Evidence is growing that AWD will dramatically reduce the concentration of arsenic in harvested rice grains conferring a third major advantage over permanently flooded dry season rice production. AWD may also increase the concentration of essential dietary micronutrients in the grain. However, three crucial aspects of AWD irrigation require further investigation. First, why is yield generally altered in AWD? Second, is AWD sustainable economically (viability of farmers' livelihoods) and environmentally (aquifer water table heights) over long-term use? Third, are current cultivars optimized for this irrigation system? This paper describes a multidisciplinary research project that could be conceived which would answer these questions by combining advanced soil biogeochemistry with crop physiology, genomics, and systems biology. The description attempts to show how the breakthroughs in next generation sequencing could be exploited to better utilize local collections of germplasm and identify the molecular mechanisms underlying biological adaptation to the environment within the context of soil chemistry and plant physiology.