999 resultados para Water excretion
Resumo:
To achieve the sustainable use and development of water resources is a daunting challenge for both the global and local communities. It requires commitments by all groups within the international, national and local communities from their own particular, possibly conflicting, perspectives. Without a set of coherent legal arrangements designed to ensure effective governance of water resources, their sustainable use and development are unlikely to be achieved. This study looks at how the legal arrangements for managing water resources have evolved across the continents over hundreds of years; their relevance for contemporary society; how the norms of current international and national legal regimes are responding; and, most importantly, how legal rights and duties should be structured so as to achieve sustainability in the future.
Resumo:
Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and industrial purposes has the potential to concentrate radioactive materials. Inevitably concentrated radioactive material is discharged to the environment as a waste product, reused for soil conditioning, or perhaps recycled as a new potable water supply. This thesis, presented as a collection of peer reviewed scientific papers, explores a number of water / wastewater treatment applications, and the subsequent nature and potential impact of radioactive residues associated with water exploitation processes. The thesis draws together research outcomes for sites predominantly throughout Queensland, Australia, where it is recognised that there is a paucity of published data on the subject. This thesis contributes to current knowledge on the monitoring, assessment and potential for radiation exposure from radioactive residues associated with the water industry.
Resumo:
'my mother is water, my father is wood' was an installation comprised of two large cork discs mounted on the gallery floor and wall, overlaid with images of photographic and archival research evidence, and a turned wood sculptural object. It also included a short video work on a miniature screen embedded in the upright disc. The work explored the language of natural elements and the structure of genealogical research to discuss the Scandinavian history of Queensland and my own family. The work was selected by the directors of LEVEL ARI in Brisbane for inclusion in their 2011 exhibitions program.
Resumo:
This PhD study examines whether water allocation becomes more productive when it is re-allocated from 'low' to 'high' efficient alternative uses in village irrigation systems (VISs) in Sri Lanka. Reservoir-based agriculture is a collective farming economic activity, which inter-sectoral allocation of water is assumed to be inefficient due to market imperfections and weak user rights. Furthermore, the available literature shows that a „head-tail syndrome. is the most common issue for intra-sectoral water management in „irrigation. agriculture. This research analyses the issue of water allocation by using primary data collected from two surveys of 460 rice farmers and 325 fish farming groups in two administrative districts in Sri Lanka. Technical efficiency estimates are undertaken for both rice farming and culture-based fisheries (CBF) production. The equi-marginal principle is applied for inter and intra-sectoral allocation of water. Welfare benefits of water re-allocation are measured through consumer surplus estimation. Based on these analyses, the overall findings of the thesis can be summarised as follows. The estimated mean technical efficiency (MTE) for rice farming is 73%. For CBF production, the estimated MTE is 33%. The technical efficiency distribution is skewed to the left for rice farming, while it skewed to the right for CBF production. The results show that technical efficiency of rice farming can be improved by formalising transferability of land ownership and, therefore, water user rights by enhancing the institutional capacity of Farmer Organisations (FOs). Other effective tools for improving technical efficiency of CBF production are strengthening group stability of CBF farmers, improving the accessibility of official consultation, and attracting independent investments. Inter-sectoral optimal allocation shows that the estimated inefficient volume of water in rice farming, which can be re-allocated for CBF production, is 32%. With the application of successive policy instruments (e.g., a community transferable quota system and promoting CBF activities), there is potential for a threefold increase in marginal value product (MVP) of total reservoir water in VISs. The existing intra-sectoral inefficient volume of water use in tail-end fields and head-end fields can potentially be removed by reducing water use by 10% and 23% respectively and re-allocating this to middle fields. This re-allocation may enable a twofold increase in MVP of water used in rice farming without reducing the existing rice output, but will require developing irrigation practices to facilitate this re-allocation. Finally, the total productivity of reservoir water can be increased by responsible village level institutions and primary level stakeholders (i.e., co-management) sharing responsibility of water management, while allowing market forces to guide the efficient re-allocation decisions. This PhD has demonstrated that instead of farmers allocating water between uses haphazardly, they can now base their decisions on efficient water use with a view to increasing water productivity. Such an approach, no doubt will enhance farmer incomes and community welfare.
Resumo:
This paper provides a critique of the Water Sensitive Urban Design (WSUD) paradigm by discussing its congruence with an established sustainable design principle called 'whole system design'. It was found that WSUD is congruent with the whole system design approach as a philosophy, but not in practice. Future improvement of WSUD practice may depend on the adoption of a front-loaded, teamwork-based design and planning process that is embedded in the principle of whole system design.
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.
Resumo:
The purpose of this study was to determine the effects of cryotherapy, in the form of cold water immersion, on knee joint position sense. Fourteen healthy volunteers, with no previous knee injury or pre-existing clinical condition, participated in this randomized cross-over trial. The intervention consisted of a 30-min immersion, to the level of the umbilicus, in either cold (14 ± 1°C) or tepid water(28 ± 1°C). Approximately one week later, in a randomized fashion, the volunteers completed the remaining immersion. Active ipsilateral limb repositioning sense of the right knee was measured, using weight-bearing and non-weight bearing assessments, employing video-recorded 3D motion analysis. These assessments were conducted immediately before and after a cold and tepid water immersion. No significant differences were found between treatments for the absolute (P = 0.29), relative (P = 0.21) or variable error (P = 0.86). The average effect size of the outcome measures was modest (range –0.49 to 0.9) and all the associated 95% confidence intervals for these effect sizes crossed zero. These results indicate that there is no evidence of an enhanced risk of injury, following a return to sporting activity, after cold water.
Resumo:
An increase in the likelihood of navigational collisions in port waters has put focus on the collision avoidance process in port traffic safety. The most widely used on-board collision avoidance system is the automatic radar plotting aid which is a passive warning system that triggers an alert based on the pilot’s pre-defined indicators of distance and time proximities at the closest point of approaches in encounters with nearby vessels. To better help pilot in decision making in close quarter situations, collision risk should be considered as a continuous monotonic function of the proximities and risk perception should be considered probabilistically. This paper derives an ordered probit regression model to study perceived collision risks. To illustrate the procedure, the risks perceived by Singapore port pilots were obtained to calibrate the regression model. The results demonstrate that a framework based on the probabilistic risk assessment model can be used to give a better understanding of collision risk and to define a more appropriate level of evasive actions.
Resumo:
Navigational collisions are one of the major safety concerns for many seaports. Despite the extent of work recently done on collision risk analysis in port waters, little is known about the influencing factors of the risk. This paper develops a technique for modeling collision risks in port waterways in order to examine the associations between the risks and the geometric, traffic, and regulatory control characteristics of waterways. A binomial logistic model, which accounts for the correlations in the risks of a particular fairway at different time periods, is derived from traffic conflicts and calibrated for the Singapore port fairways. Estimation results show that the fairways attached to shoreline, traffic intersection and international fairway attribute higher risks, whereas those attached to confined water and local fairway possess lower risks. Higher risks are also found in the fairways featuring higher degree of bend, lower depth of water, higher numbers of cardinal and isolated danger marks, higher density of moving ships and lower operating speed. The risks are also found to be higher for night-time conditions.
Resumo:
Photocatalytic water splitting is a process which could potentially lead to commercially viable solar hydrogen production. This thesis uses an engineering perspective to investigate the technology. The effect of light intensity and temperature on photocatalytic water splitting was examined to evaluate the prospect of using solar concentration to increase the feasibility of the process. P25 TiO2 films deposited on conducting glass were used as photocatalyst electrodes and coupled with platinum electrodes which were also deposited on conducting glass. These films were used to form a photocatalysis cell and illuminated with a Xenon arc lamp to simulate solar light at intensities up to 50 suns. They were also tested at temperatures between 20°C and 100°C. The reaction demonstrated a sub-linear relationship with intensity. Photocurrent was proportional to intensity with an exponential value of 0.627. Increasing temperature resulted in an exponential relationship. This proved to follow an Arrhenius relationship with an activation energy of 10.3 kJ mol-1 and a pre-exponential factor of approximately 8.7×103. These results then formed the basis of a mathematical model which extrapolated beyond the range of the experimental tests. This model shows that the loss of efficiency from performing the reaction under high light intensity is offset by the increased reaction rate and efficiency from the associated temperature increase. This is an important finding for photocatalytic water splitting. It will direct future research in system design and materials research and may provide an avenue for the commercialisation of this technology.
Resumo:
With increasing rate of shipping traffic, the risk of collisions in busy and congested port waters is expected to rise. However, due to low collision frequencies it is difficult to analyze such risk in a sound statistical manner. This study aims at examining the occurrence of traffic conflicts in order to understand the characteristics of vessels involved in navigational hazards. A binomial logit model was employed to evaluate the association of vessel attributes and the kinematic conditions with conflict severity levels. Results show a positive association for vessels of small gross tonnage, overall vessel length, vessel height and draft with conflict risk. Conflicts involving a pair of dynamic vessels sailing at low speeds also have similar effects.
Resumo:
With increasing rate of shipping traffic, the risk of collisions in busy and congested port waters is likely to rise. However, due to low collision frequencies in port waters, it is difficult to analyze such risk in a sound statistical manner. A convenient approach of investigating navigational collision risk is the application of the traffic conflict techniques, which have potential to overcome the difficulty of obtaining statistical soundness. This study aims at examining port water conflicts in order to understand the characteristics of collision risk with regard to vessels involved, conflict locations, traffic and kinematic conditions. A hierarchical binomial logit model, which considers the potential correlations between observation-units, i.e., vessels, involved in the same conflicts, is employed to evaluate the association of explanatory variables with conflict severity levels. Results show higher likelihood of serious conflicts for vessels of small gross tonnage or small overall length. The probability of serious conflict also increases at locations where vessels have more varied headings, such as traffic intersections and anchorages; becoming more critical at night time. Findings from this research should assist both navigators operating in port waters as well as port authorities overseeing navigational management.
Resumo:
Habitat fragmentation as a result of urbanisation is a growing problem for native lizard species. The Eastern Water Dragon (Physignathus lesueurii) is a social arboreal agamid lizard, native to Australia. This species represents an ideal model species to investigate the effect of urbanisation because of their prominent abundance in the urban landscape. Here we describe the isolation and characterisation of a novel set of 74 di-, tri-, and tetramicrosatellites from which 18 were selected and optimised into two multiplexes. The 18 microsatellites generated a total 148 alleles across the two populations. The number of alleles per locus varied from 2 to 18 alleles and measures of Ho and He varied from 0.395 to 0.877 and from 0.441 to 0.880, respectively. We also present primers for four novel mitochondrial DNA (mtDNA) markers. The combined length of the four mtDNA marker pairs was 2,528 bp which included 15 nucleotides changes. In comparison to threatened species, which are generally characterised by small population sizes, the Eastern Water Dragon represents an ideal model species to investigate the effect of urbanisation on their behavioural ecology and connectivity patterns among populations.