963 resultados para Waste management models
Resumo:
"SW-868"--Cover.
Resumo:
Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.
Resumo:
This study presents a methodology for the characterization of construction and demolition (C&D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TCA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C&D samples taken from the Sao Paulo region in Brazil are discussed. Chemical compositions of mixed C&D aggregate samples have mostly been influenced by particle size rather than the visual classification of C&D into red or grey and geographical origin. The amount of measured soluble salts in C&D aggregates (0.15-25.4 mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C&D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C&D powders (< 0.15 min). The clay content of the powders was also high, potentially resulting from soil intermixed with the C&D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO(2), the powders have potential use as raw materials for the cement industry. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Case management models evolved as the mental health care system shifted hospital to community settings. The research evidence underscores the efficacy of certain case management models under 'ideal' conditions; what is less clear, is how these models perform in day to day clinical practice. Moreover, the economic perspective adopted by most studies is relatively narrow thus limiting a proper understanding of the costs and benefits of such models. This paper reviews recent work in the field and highlights gaps in both method and application as a focus for future work. Curr Opin Psychiatry 12:195-199, (C) 1999 Lippincott Williams & Wilkins.
Resumo:
Dissertação de Mestrado, Ambiente, Saúde e Segurança, 18 de Fevereiro de 2011, Universidade dos Açores.
Resumo:
Organic waste is a rich substrate for microbial growth, and because of that, workers from waste industry are at higher risk of exposure to bioaerosols. This study aimed to assess fungal contamination in two plants handling solid waste management. Air samples from the two plants were collected through an impaction method. Surface samples were also collected by swabbing surfaces of the same indoor sites. All collected samples were incubated at 27◦C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. Air samples were also subjected to molecular methods by real-time polymerase chain reaction (RT PCR) using an impinger method to measure DNA of Aspergillus flavus complex and Stachybotrys chartarum. Assessment of particulate matter (PM) was also conducted with portable direct-reading equipment. Particles concentration measurement was performed at five different sizes (PM0.5; PM1; PM2.5; PM5; PM10). With respect to the waste sorting plant, three species more frequently isolated in air and surfaces were A. niger (73.9%; 66.1%), A. fumigatus (16%; 13.8%), and A. flavus (8.7%; 14.2%). In the incineration plant, the most prevalent species detected in air samples were Penicillium sp. (62.9%), A. fumigatus (18%), and A. flavus (6%), while the most frequently isolated in surface samples were Penicillium sp. (57.5%), A. fumigatus (22.3%) and A. niger (12.8%). Stachybotrys chartarum and other toxinogenic strains from A. flavus complex were not detected. The most common PM sizes obtained were the PM10 and PM5 (inhalable fraction). Since waste is the main internal fungal source in the analyzed settings, preventive and protective measures need to be maintained to avoid worker exposure to fungi and their metabolites.
Resumo:
Aflatoxin B1 (AFB1) is considered by different International Agencies as a genotoxic and potent hepatocarcinogen. However, despite the fact that the fungi producing this compound are detected in some work environments, AFB1 is rarely monitored in occupational settings. The aim of the present investigation was to assess exposure to AFB1 of workers from one Portuguese waste company located in the outskirt of Lisbon. Occupational exposure assessment to AFB1 was done with a biomarker of internal dose that measures AFB1 in the serum by enzyme-linked immunosorbent assay. Forty-one workers from the waste company were enrolled in this study (26 from sorting; 9 from composting; 6 from incineration). A control group (n = 30) was also considered in order to know the AFB1 background levels for the Portuguese population. All the workers showed detectable levels of AFB1 with values ranging from 2.5ng ml−1 to 25.9ng ml−1 with a median value of 9.9±5.4ng ml−1. All of the controls showed values below the method’s detection limit. Results obtained showed much higher (8-fold higher) values when compared with other Portuguese settings already studied, such as poultry and swine production. Besides this mycotoxin, other mycotoxins are probably present in this occupational setting and this aspect should be taken into consideration for the risk assessment process due to possible synergistic reactions. The data obtained suggests that exposure to AFB1 occurs in a waste management setting and claims attention for the need of appliance of preventive and protective safety measures.
Resumo:
Objectives - This study intended to characterize work environment contamination by particles in 2 waste-sorting plants. Material and Methods - Particles were measured by portable direct-reading equipment. Besides mass concentration in different sizes, data related with the number of particles concentration were also obtained. Results - Both sorting units showed the same distribution concerning the 2 exposure metrics: particulate matter 5 (PM5) and particulate matter 10 (PM10) reached the highest levels and 0.3 μm was the fraction with a higher number of particles. Unit B showed higher (p < 0.05) levels for both exposure metrics. For instance, in unit B the PM10 size is 9-fold higher than in unit A. In unit A, particulate matter values obtained in pre-sorting and in the sequential sorting cabinet were higher without ventilation working. Conclusions - Workers from both waste-sorting plants are exposed to particles. Particle counting provided additional information that is of extreme value for analyzing the health effects of particles since higher values of particles concentration were obtained in the smallest fraction.
Resumo:
In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.
Resumo:
High loads of fungi have been reported in different types of waste management plants. This study intends to assess fungal contamination in one waste-sorting plant before and after cleaning procedures in order to analyze their effectiveness. Air samples of 50 L were collected through an impaction method, while surface samples, taken at the same time, were collected by the swabbing method and subject to further macro- and microscopic observations. In addition, we collected air samples of 250 L using the impinger Coriolis μ air sampler (Bertin Technologies) at 300 L/min airflow rate in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely Aspergillus fumigatus and Aspergillus flavus complexes, as well as Stachybotrys chartarum species. Fungal quantification in the air ranged from 180 to 5,280 CFU m−3 before cleaning and from 220 to 2,460 CFU m−3 after cleaning procedures. Surfaces presented results that ranged from 29 × 104 to 109 × 104 CFU m−2 before cleaning and from 11 × 104 to 89 × 104 CFU m−2 after cleaning. Statistically significant differences regarding fungal load were not detected between before and after cleaning procedures. Toxigenic strains from A. flavus complex and S. chartarum were not detected by qPCR. Conversely, the A. fumigatus species was successfully detected by qPCR and interestingly it was amplified in two samples where no detection by conventional methods was observed. Overall, these results reveal the inefficacy of the cleaning procedures and that it is important to determine fungal burden in order to carry out risk assessment.
Resumo:
In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.
Resumo:
In this study, the added value resultant from the incorporation of pultrusion production waste into polymer based concretes was assessed. For this purpose, different types of thermoset composite scrap material, proceeding from GFRP pultrusion manufacturing process, were mechanical shredded and milled into a fibrous-powdered material. Resultant GFRP recyclates, with two different size gradings, were added to polyester based mortars as fine aggregate and filler replacements, at various load contents between 4% up to 12% in weight of total mass. Flexural and compressive loading capacities were evaluated and found better than those of unmodified polymer mortars. Obtained results highlight the high potential of recycled GFRP pultrusion waste materials as efficient and sustainable admixtures for concrete and mortar-polymer composites, constituting an emergent waste management solution.
Resumo:
Devido à atual crise socioeconómica e consequente recessão dos mercados, as empresas precisam cada vez mais de melhorar os seus modelos de gestão e apostar na melhoria dos seus processos de forma a conseguirem produzir produtos de qualidade utilizando o menor custo de produção possível. O uso das ferramentas Lean Production e das ferramentas de Gestão da Qualidade permite às empresas reduzir, ou até mesmo eliminar alguns desperdícios. Desta forma é possível reduzir custos de produção e aumentar a produtividade. Neste contexto surge a presente dissertação, realizada na empresa IKEA Industry Portugal no âmbito do Mestrado em Engenharia Mecânica – Gestão Industrial, que tem como principal objetivo melhorar o processo produtivo de uma linha de produção da área EdgeBand & Drill, linha Biesse. No início deste projeto esta linha apresentava uma eficiência de 45,83%. Depois da descrição da empresa e do seu funcionamento, realizou-se um estudo sobre o estado atual do sistema produtivo da área de produção em estudo, Edgeband & Drill, mais concretamente da linha Biesse. Desse estudo resultou a identificação de alguns problemas da linha, nomeadamente a baixa eficiência, elevados tempos de paragem da linha, elevada quantidade de peças com defeitos, elevados custos associados a peças sucata, falta de polivalência dos operadores, desperdícios de matérias primas e falta de organização e limpeza da área. Depois de identificados os problemas foram apresentadas algumas propostas de melhoria para o processo produtivo da linha Biesse. Nesta fase foram utilizadas algumas ferramentas Lean e de Gestão da Qualidade. No fim do projeto obteve-se uma redução de 1,26% dos tempos de paragem, uma redução de 1317 peças com defeito e uma poupança de 1147,44€ em peças sucata. Estes valores contribuíram para uma melhoria da eficiência global em cerca de 1,06% para a área EdgeBand & Drill e uma melhoria de 3,11% para a linha em estudo, linha Biesse.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Autor proof