362 resultados para WDM
Resumo:
We report the development of a WDM optical sensor array interrogation system using the radiation modes from a BFBG. We present results indicating 70nm bandwidth, with 0.2um RMS noise and a minimum WDM spacing of 30um. We further show the system to be polarization independent.
Resumo:
We experimentally demonstrate a Raman-Assisted Fibre Optical Parametric Amplifier (RA-FOPA) with 20dB net gain using wavelength division multiplexed signals. We report amplification of 10×58Gb/s 100GHz-spaced QPSK signals and show that by appropriate tuning of the parametric pump power and frequency, gain improvement of up to 5dB can be achieved for the RA-FOPA compared with combined individual contributions from the parametric and Raman pumps. We compare the RAFOPA with an equivalent-gain conventional FOPA and find that four-wave mixing crosstalk is substantially reduced by up to 5.8 ± 0.4dB using the RA-FOPA. Worst-case performance penalty of the RA-FOPA is found to be only 1.0 ± 0.2dB over all measured OSNRs, frequencies and input powers, making it an attractive proposal for future communications systems.
Resumo:
Using the principle of quasi-continuous filtering in a non-linear fibre, we propose an optical device for the simultaneous regeneration of sevaral channels at 40 Gbit/s. Simulations predict an improvement of the signal quality for four channels by more than 6.8 dB.
Bit-error rate performance of 20 Gbit/s WDM RZ-DPSK non-slope matched submarine transmission systems
Resumo:
Applying direct error counting, we assess the performance of 20 Gbit/s wavelength-division multiplexing return-to-zero differential phase-shift keying (RZ-DPSK) transmission at 0.4 bit/(s Hz) spectral efficiency for application on installed non-zero dispersion-shifted fibre based transoceanic submarine systems. The impact of the pulse duty cycle on the system performance is investigated and the reliability of the existing theoretical approaches to the BER estimation for the RZ-DPSK format is discussed.
Resumo:
WDM signal degradation from pump phase-modulation in a one-pump 20dB net-gain fibre optical parametric amplifier is experimentally and numerically characterised for the first time using 10x59Gb/s QPSK signals.
Resumo:
Hybrid WDM/TDM enabled microstructure based optical fiber sensor network with large capacity is proposed. Assisted by Fabry-Perot filter, the demodulation system with high speed of 500Hz and high wavelength resolution less than 4.91pm is realized. © OSA 2015.
Resumo:
We use the GN-model to assess Nyquist-WDM 100/200Gbit/s PM-QPSK/16QAM signal reach on low loss, large core area fibre using extended range, variable gain hybrid Raman-EDFAs. 5000/1500km transmission is possible over a wide range of amplifier spans. © OSA 2014.
Resumo:
In this work a self-referenced technique for fiberoptic intensity sensors using virtual lock-in amplifiers is proposed and discussed. The topology is compatible with WDM networks so multiple remote sensors can simultaneously be interrogated. A hybrid approach combining both silica fiber Bragg gratings and polymer optical fiber Bragg gratings is analyzed. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown and tested using a selfreferenced configuration based on a power ratio parameter.
Resumo:
In this paper we proposed a demodulation scheme based on tunable FP filter for the WDM/FDM sensing system of the microstructure mentioned in the previous work. Simulation is done to prove the feasibility of demodulating the microstructure with the tunable FP filter. The experiments result showed high consistence with the simulation. And with the help of the high speed FPGA module and a high resolution AD/DA card, the system has achieved a very high resolution, up to 2.5 pm, and wavelength ranges 1520nm to 1590 nm.
Resumo:
We perform an extensive numerical analysis of Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPA) in the context of WDM QPSK signal amplification. A detailed comparison of the conventional FOPA and RA-FOPA is reported and the important advantages offered by the Raman pumping are clarified. We assess the impact of pump power ratios, channel count, and highly nonlinear fibre (HNLF) length on crosstalk levels at different amplifier gains. We show that for a fixed 200 m HNLF length, maximum crosstalk can be reduced by up to 7 dB when amplifying 10x58Gb/s QPSK signals at 20 dB net-gain using a Raman pump of 37 dBm and parametric pump of 28.5 dBm in comparison to a standard single-pump FOPA using 33.4 dBm pump power. It is shown that a significant reduction in four-wave mixing crosstalk is also obtained by reducing the highly nonlinear fibre interaction length. The trend is shown to be generally valid for different net-gain conditions and channel grid size. Crosstalk levels are additionally shown to strongly depend on the Raman/parametric pump power ratio, with a reduction in crosstalk seen for increased Raman pump power contribution.
Resumo:
We perform a full numerical characterisation of half-open cavity random DFB Raman fibre laser amplifier schemes for WDM transmission in terms of signal power variation, noise and nonlinear impairments, showcasing the excellent potential of this scheme to provide amplification for DWDM transmission with very low gain variation.
Resumo:
We present experimental results for wavelength-division multiplexed (WDM) transmission performance using unbalanced proportions of 1s and 0s in pseudo-random bit sequence (PRBS) data. This investigation simulates the effect of local, in time, data unbalancing which occurs in some coding systems such as forward error correction when extra bits are added to the WDM data stream. We show that such local unbalancing, which would practically give a time-dependent error-rate, can be employed to improve the legacy long-haul WDM system performance if the system is allowed to operate in the nonlinear power region. We use a recirculating loop to simulate a long-haul fibre system.
Resumo:
Electro-optical transceivers can be implemented employing all-analog signal processing in order to achieve low values of power consumption and latency. This paper shows that the spectral efficiency of such solutions can be increased by combining orthogonal multicarrier techniques and off-the-shelf microwave components. A real-time 108-Gbit/s experiment was performed emulating a wavelength division multiplexing (WDM) system composed of five optical channels. The optical carriers were provided by an externally injected gain switched optical frequency comb. Each optical channel transmitted a 21.6-Gbit/s orthogonal subcarrier multiplexing (SCM) signal that was modulated and demodulated in the electrical domain without the requirement for digital signal processing. The net data rate remained higher than 100 Gbit/s after taking into account forward error correction overheads. The use of orthogonally overlapping subchannels achieves an unprecedented spectral efficiency in all-analog real-time broadband WDM/SCM links.
Resumo:
We develop a framework for estimating the quality of transmission (QoT) of a new lightpath before it is established, as well as for calculating the expected degradation it will cause to existing lightpaths. The framework correlates the QoT metrics of established lightpaths, which are readily available from coherent optical receivers that can be extended to serve as optical performance monitors. Past similar studies used only space (routing) information and thus neglected spectrum, while they focused on oldgeneration noncoherent networks. The proposed framework accounts for correlation in both the space and spectrum domains and can be applied to both fixed-grid wavelength division multiplexing (WDM) and elastic optical networks. It is based on a graph transformation that exposes and models the interference between spectrum-neighboring channels. Our results indicate that our QoT estimates are very close to the actual performance data, that is, to having perfect knowledge of the physical layer. The proposed estimation framework is shown to provide up to 4 × 10-2 lower pre-forward error correction bit error ratio (BER) compared to theworst-case interference scenario,which overestimates the BER. The higher accuracy can be harvested when lightpaths are provisioned with low margins; our results showed up to 47% reduction in required regenerators, a substantial savings in equipment cost.
Resumo:
We report the first WDM numerical characterisation of crosstalk growth in cascaded Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPAs). A cascade of ten RA-FOPAs results in ∼13dB lower crosstalk than the equivalent cascade of conventional FOPAs.