975 resultados para Vulcanization characteristics based on accelerator combinations
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
; High-resolution grain size analyses of three AMS (14)C-dated cores from the Southeastern Brazilian shelf provide a detailed record of mid- to late-Holocene environmental changes in the Southwestern Atlantic Margin. The cores exhibit millennial variability that we associate with the previously described southward shift of the Inter Tropical Convergence Zone (ITCZ) average latitudinal position over the South American continent during the Holocene climatic maximum. This generated changes in the wind-driven current system of the SW Atlantic margin and modified the grain size characteristics of the sediments deposited there. Centennial variations in the grain size are associated with a previously described late-Holocene enhancement of the El Nino-Southern Oscillation (ENSO) amplitude, which led to stronger NNE trade winds off eastern Brazil, favouring SW transport of sediments from the Paraiba do Sul River. This is recorded in a core from off Cabo Frio as a coarsening trend from 3000 cal. BP onwards. The ENSO enhancement also caused changes in precipitation and wind pattern in southern Brazil, allowing high discharge events and northward extensions of the low-saline water plume from Rio de la Plata. We propose that this resulted in a net increase in northward alongshore transport of fine sediments, seen as a prominent fine-shift at 2000 cal. BP in a core from similar to 24 degrees S on the Brazilian shelf. Wavelet-and spectral analysis of the sortable silt records show a significant similar to 1000-yr periodicity, which we attribute to solar forcing. If correct, this is one of the first indications of solar forcing of this timescale on the Southwestern Atlantic margin.
Resumo:
BACKGROUND: It is widely accepted that red wines constitute one of the most important sources of dietary polyphenolic antioxidants. However, it is still not known how some variables such as variety, vintage, country of origin, and retail price are associated with the antioxidant activity and sensory profile of South American red wines. In this regard, 80 samples produced in Brazil, Chile and Argentina were assessed in relation to their sensory properties, color and in vitro antioxidant activity, and results were subjected to multivariate statistical techniques. RESULTS: Samples were grouped in clusters, characterized by high, intermediate and low in vitro antioxidant activity, sensory properties and prices. It was possible to observe that wines with high antioxidant activity were associated to high retail prices and overall perception of sensory quality. CONCLUSION: South American wines produced from Vitis vinifera such as Syrah, Malbec and Cabernet Sauvignon had higher in vitro antioxidant activity and also higher sensory quality than wines produced from Vitis labrusca. This result was independent of vintage (2002-2010), corroborating the idea that the same grape varietal, even when produced in different years, displays similar sensory characteristics and antioxidant activity. (C) 2011 Society of Chemical Industry
Resumo:
OBJECTIVE: Hypertension is a major issue in public health, and the financial costs associated with hypertension continue to increase. Cost-effectiveness studies focusing on antihypertensive drug combinations, however, have been scarce. The cost-effectiveness ratios of the traditional treatment (hydrochlorothiazide and atenolol) and the current treatment (losartan and amlodipine) were evaluated in patients with grade 1 or 2 hypertension (HT1-2). For patients with grade 3 hypertension (HT3), a third drug was added to the treatment combinations: enalapril was added to the traditional treatment, and hydrochlorothiazide was added to the current treatment. METHODS: Hypertension treatment costs were estimated on the basis of the purchase prices of the antihypertensive medications, and effectiveness was measured as the reduction in systolic blood pressure and diastolic blood pressure (in mm Hg) at the end of a 12-month study period. RESULTS: When the purchase price of the brand-name medication was used to calculate the cost, the traditional treatment presented a lower cost-effectiveness ratio [US$/mm Hg] than the current treatment in the HT1-2 group. In the HT3 group, however, there was no difference in cost-effectiveness ratio between the traditional treatment and the current treatment. The cost-effectiveness ratio differences between the treatment regimens maintained the same pattern when the purchase price of the lower-cost medication was used. CONCLUSIONS: We conclude that the traditional treatment is more cost-effective (US$/mm Hg) than the current treatment in the HT1-2 group. There was no difference in cost-effectiveness between the traditional treatment and the current treatment for the HT3 group.
Resumo:
OBJECTIVE: The frequent occurrence of inconclusive serology in blood banks and the absence of a gold standard test for Chagas'disease led us to examine the efficacy of the blood culture test and five commercial tests (ELISA, IIF, HAI, c-ELISA, rec-ELISA) used in screening blood donors for Chagas disease, as well as to investigate the prevalence of Trypanosoma cruzi infection among donors with inconclusive serology screening in respect to some epidemiological variables. METHODS: To obtain estimates of interest we considered a Bayesian latent class model with inclusion of covariates from the logit link. RESULTS: A better performance was observed with some categories of epidemiological variables. In addition, all pairs of tests (excluding the blood culture test) presented as good alternatives for both screening (sensitivity > 99.96% in parallel testing) and for confirmation (specificity > 99.93% in serial testing) of Chagas disease. The prevalence of 13.30% observed in the stratum of donors with inconclusive serology, means that probably most of these are non-reactive serology. In addition, depending on the level of specific epidemiological variables, the absence of infection can be predicted with a probability of 100% in this group from the pairs of tests using parallel testing. CONCLUSION: The epidemiological variables can lead to improved test results and thus assist in the clarification of inconclusive serology screening results. Moreover, all combinations of pairs using the five commercial tests are good alternatives to confirm results.
Resumo:
[EN] Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity.
Resumo:
Precipitation retrieval over high latitudes, particularly snowfall retrieval over ice and snow, using satellite-based passive microwave spectrometers, is currently an unsolved problem. The challenge results from the large variability of microwave emissivity spectra for snow and ice surfaces, which can mimic, to some degree, the spectral characteristics of snowfall. This work focuses on the investigation of a new snowfall detection algorithm specific for high latitude regions, based on a combination of active and passive sensors able to discriminate between snowing and non snowing areas. The space-borne Cloud Profiling Radar (on CloudSat), the Advanced Microwave Sensor units A and B (on NOAA-16) and the infrared spectrometer MODIS (on AQUA) have been co-located for 365 days, from October 1st 2006 to September 30th, 2007. CloudSat products have been used as truth to calibrate and validate all the proposed algorithms. The methodological approach followed can be summarised into two different steps. In a first step, an empirical search for a threshold, aimed at discriminating the case of no snow, was performed, following Kongoli et al. [2003]. This single-channel approach has not produced appropriate results, a more statistically sound approach was attempted. Two different techniques, which allow to compute the probability above and below a Brightness Temperature (BT) threshold, have been used on the available data. The first technique is based upon a Logistic Distribution to represent the probability of Snow given the predictors. The second technique, defined Bayesian Multivariate Binary Predictor (BMBP), is a fully Bayesian technique not requiring any hypothesis on the shape of the probabilistic model (such as for instance the Logistic), which only requires the estimation of the BT thresholds. The results obtained show that both methods proposed are able to discriminate snowing and non snowing condition over the Polar regions with a probability of correct detection larger than 0.5, highlighting the importance of a multispectral approach.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
The growing interest for Integrated Optics for sensing, telecommunications and even electronics is driving research to find solutions to the new challenges issued by a more and more fast, connected and smart world. This thesis deals with the design, the fabrication and the characterisation of the first prototypes of Microring Resonators realised using ion implanted Lithium Niobate (LiNbO3) ridge waveguides. Optical Resonator is one among the most important devices for all tasks described above. LiNbO3 is the substrate commonly used to fabricate optical modulators thanks to its electro-optic characteristics. Since it is produced in high quantity, good quality and large wafers its price is low compared to other electro-optic substrate. We propose to use ion implantation as fabrication technology because in the other way standard optical waveguides realised in LiNbO3 by Proton Exchange (PE) or metal diffusion do not allow small bending radii, which are necessary to keep the circuit footprint small. We will show in fact that this approach allows to fabricate waveguides on Lithium Niobate that are better than PE or metal diffused waveguides as it allows smaller size devices and tailoring of the refractive index profile controlling the implantation parameters. Moreover, we will show that the ridge technology based on enhanced etching rate via ion implantation produces a waveguide with roughness lower than a dry etched one. Finally it has been assessed a complete technological process for fabrication of Microring Resonator devices in Lithium Niobate by ion implantation and the first prototypes have been produced.
Resumo:
In this work, two different systems were investigated to develop fundamental understanding of the self-assembly behavior of polyelectrolytes and small organic counterions with a certain geometry. Complexes formed were characterized by light scattering in solution, as well as UV-Vis spectroscopy, analytical ultracentrifugation, gel electrophoresis, zeta potential and IR spectroscopy. The morphologies of the aggregates were observed by AFM in dried state on surface. The charge ratio, the valence and the structure of the counterion were shown to represent key parameters in the complexation. The influence of polyelectrolyte type and molecular weights was also determined for the structure formed.rnrnOne system was mainly focused on the association of double-strand DNA with non-intercalating divalent and tetravalent organic counterions. The other model system involved linear NaPSS and oligolysines. In addition, various influences on the morphology of the charged self-assembly complexes in AFM studies were discussed. It was shown that electrostatic self-assembly of DNA and non-intercalating counterions as well as of a linear synthetic polyelectrolyte with oligolysine counterions that can build mutual hydrogen bonds can yield supramolecular aggregates of a defined size. Various morphologies (flower-like, rod-like, toroidal and spherical) of the assemblies were obtained for different combinations of polyelectrolyte and counterions. Results presented in this work are of importance for the fundamental understanding of the association behavior of various polyelectrolytes and organic counterions. The selection of biopolymers for the study may give an opportunity to transfer the basic research results into biological applications, such as gene therapy or drug delivery.rn