973 resultados para Visual discrimination
Resumo:
In this paper, we develop the switching controller presented by Lee et al. for the pose control of a car-like vehicle, to allow the use of an omnidirectional vision sensor. To this end we incorporate an extension to a hypothesis on the navigation behaviour of the desert ant, cataglyphis bicolor, which leads to a correspondence free landmark based vision technique. The method we present allows positioning to a learnt location based on feature bearing angle and range discrepancies between the robot's current view of the environment, and that at a learnt location. We present simulations and experimental results, the latter obtained using our outdoor mobile platform.
Resumo:
This paper demonstrates some interesting connections between the hitherto disparate fields of mobile robot navigation and image-based visual servoing. A planar formulation of the well-known image-based visual servoing method leads to a bearing-only navigation system that requires no explicit localization and directly yields desired velocity. The well known benefits of image-based visual servoing such as robustness apply also to the planar case. Simulation results are presented.
Resumo:
The application of high-speed machine vision for close-loop position control, or visual servoing, of a robot manipulator. It provides a comprehensive coverage of all aspects of the visual servoing problem: robotics, vision, control, technology and implementation issues. While much of the discussion is quite general the experimental work described is based on the use of a high-speed binary vision system with a monocular "eye-in-hand" camera.
Resumo:
This present paper reviews the reliability and validity of visual analogue scales (VAS) in terms of (1) their ability to predict feeding behaviour, (2) their sensitivity to experimental manipulations, and (3) their reproducibility. VAS correlate with, but do not reliably predict, energy intake to the extent that they could be used as a proxy of energy intake. They do predict meal initiation in subjects eating their normal diets in their normal environment. Under laboratory conditions, subjectively rated motivation to eat using VAS is sensitive to experimental manipulations and has been found to be reproducible in relation to those experimental regimens. Other work has found them not to be reproducible in relation to repeated protocols. On balance, it would appear, in as much as it is possible to quantify, that VAS exhibit a good degree of within-subject reliability and validity in that they predict with reasonable certainty, meal initiation and amount eaten, and are sensitive to experimental manipulations. This reliability and validity appears more pronounced under the controlled (but more arti®cial) conditions of the laboratory where the signal : noise ratio in experiments appears to be elevated relative to real life. It appears that VAS are best used in within-subject, repeated-measures designs where the effect of different treatments can be compared under similar circumstances. They are best used in conjunction with other measures (e.g. feeding behaviour, changes in plasma metabolites) rather than as proxies for these variables. New hand-held electronic appetite rating systems (EARS) have been developed to increase reliability of data capture and decrease investigator workload. Recent studies have compared these with traditional pen and paper (P&P) VAS. The EARS have been found to be sensitive to experimental manipulations and reproducible relative to P&P. However, subjects appear to exhibit a signi®cantly more constrained use of the scale when using the EARS relative to the P&P. For this reason it is recommended that the two techniques are not used interchangeably
Resumo:
Whilst a variety of studies has appeared over the last decade addressing the gap between the potential promised by computers and the reality experienced in the classroom by teachers and students, few have specifically addressed the situation as it pertains to the visual arts classroom. The aim of this study was to explore the reality of the classroom use of computers for three visual arts highschool teachers and determine how computer technology might enrich visual arts teaching and learning. An action research approach was employed to enable the researcher to understand the situation from the teachers' points of view while contributing to their professional practice. The wider social context surrounding this study is characterised by an increase in visual communications brought about by rapid advances in computer technology. The powerful combination of visual imagery and computer technology is illustrated by continuing developments in the print, film and television industries. In particular, the recent growth of interactive multimedia epitomises this combination and is significant to this study as it represents a new form of publishing of great interest to educators and artists alike. In this social context, visual arts education has a significant role to play. By cultivating a critical awareness of the implications of technology use and promoting a creative approach to the application of computer technology within the visual arts, visual arts education is in a position to provide an essential service to students who will leave high school to participate in a visual information age as both consumers and producers.