216 resultados para Viridans Streptococci
Resumo:
Group B streptococci (GBS) cause sepsis and meningitis in neonates and serious infections in adults with underlying chronic illnesses. Specific antibodies have been shown to be an important factor in protective immunity for neonates, but the role of serum complement is less well defined. To elucidate the function of the complement system in immunity to this pathogen, we have used the approach of gene targeting in embryonic stem cells to generate mice totally deficient in complement component C3. Comparison of C3-deficient mice with mice deficient in complement component C4 demonstrated that the 50% lethal dose for GBS infection was reduced by approximately 50-fold and 25-fold, respectively, compared to control mice. GBS were effectively killed in vitro by human blood leukocytes in the presence of specific antibody and C4-deficient serum but not C3-deficient serum. The defective opsonization by C3-deficient serum in vitro was corroborated by in vivo studies in which passive immunization of pregnant dams with specific antibodies conferred protection from GBS challenge to normal and C4-deficient pups but not C3-deficient pups. These results indicate that the alternative pathway is sufficient to mediate effective opsonophagocytosis and protective immunity to GBS in the presence of specific antibody. In contrast, the increased susceptibility to infection of non-immune mice deficient in either C3 or C4 implies that the classical pathway plays an essential role in host defense against GBS infection in the absence of specific immunity.
Resumo:
Beta-hemolytic streptococci of groups C and G, designated as Streptococcus dysgalactiae (SD), can cause severe and recurring invasive infections. In this case-control study, we aimed to identify clinical and molecular risk factors for recurrence of SD bacteremia. Twenty-two cases of recurrent SD bacteremia were identified, and median time between episodes was 6 months. The most frequent clinical manifestation was skin and soft tissue infection. Cases and 92 controls, with single-episode SD bacteremia, showed similar demographics, had similar Charlson comorbidity scores, and had similar clinical presentations. Thirty-day fatality was 13% among controls, whereas none of 22 cases died. In 19 cases (86%), the same emm type was encountered in both episodes. SD isolates from recurrent episodes and from single episodes had a similar emm type distribution. Thus, we did not identify clinical risk factors for recurrences. The high proportion of identical emm types in recurrent episodes indicates a host-specific colonization.
Resumo:
This review discusses various issues regarding vaccines:what are they and how they work, safety aspects, the role of adjuvants and carriers in vaccination, synthetic peptides as immunogens, and new technologies for vaccine development and delivery including the identification of novel adjuvants for mucosal vaccine delivery. There has been a recent increase of interest, in the use of lipids and carbohydrates as adjuvants, and so a particular emphasis is placed on adjuvants derived from lipids or carbohydrates, or from both. Copyright (C) 2003 European Peptide Society and John Wiley Sons, Ltd.
Resumo:
This study demonstrates the effectiveness of a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens by use of lipid core peptide (LCP) technology. An LCP formulation incorporating two different protective epitopes of the surface antiphagocytic M protein of group A streptococci (GAS)-the causative agents of rheumatic fever and subsequent rheumatic heart disease-was tested in a murine parenteral immunization and GAS challenge model. Mice were immunized with the LCP-GAS formulation, which contains an M protein amino-terminal type-specific peptide sequence (8830) in combination with a conserved non-host-cross-reactive carboxy-terminal C-region peptide sequence (J8) of the M protein. Our data demonstrated immunogenicity of the LCP-8830-J8 formulation in B10.BR mice when coadministered in complete Freund's adjuvant and in the absence of a conventional adjuvant. In both cases, immunization led to induction of high-titer GAS peptide-specific serum immunoglobulin G antibody responses and induction of highly opsonic antibodies that did not cross-react with human heart tissue proteins. Moreover, mice were completely protected from GAS infection when immunized with LCP-8830-J8 in the presence or absence of a conventional adjuvant. Mice were not protected, however, following immunization with an LCP formulation containing a control peptide from a Schistosoma sp. These data support the potential of LCP technology in the development of novel self-adjuvanting multi-antigen component vaccines and point to the potential application of this system in the development of human vaccines against infectious diseases.
Resumo:
A metabolic flux model was developed for Streptococcus zooepidemicus to compare the metabolism of glucose and maltose during aerobic batch cultivation. Lactic acid was the main product of glucose metabolism whereas acetic acid was the main product of maltose metabolism. This difference was chiefly attributed to the two-fold higher flux through NADH oxidase in maltose-grown cells that enabled the ATP generation rate to remain high despite a slower maltose consumption rate. The two-fold higher flux was matched by a two-fold increase in NADH oxidase activity, 2.53 +/- 0.1 mumol NADH min(-1) mg(-1) protein on maltose versus 1.07 +/- 0.04 Rmol NADH min(-1) mg(-1) protein on glucose, indicating that NADH oxidase activity is regulated by the energy status of the cell. Surprisingly, the energy status of the cell had little impact on hyaluronic acid (HA) yield and molecular weight. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Traditional vaccines consisting of whole attenuated micro-organisms. or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection. adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity. and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic. and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system. incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore. mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.
Resumo:
Seventy-two lactic acid producing bacterial isolates (excluding streptococci) were cultured from the gastrointestinal tract of six horses. Two of the horses were orally dosed with raftilose to induce lactic acidosis and laminitis while the remaining four were maintained on a roughage diet. Near complete 16S rDNA was amplified by PCR from the genomic DNA of each isolate. Following RFLP analysis with the restriction enzymes MboI, HhaI and HinfI, the PCR products from the IS isolates that produced L- and/or D-lactate were subsequently cloned and sequenced. DNA sequence analysis indicated that the majority of the isolates were closely related to species within the genus Lactobacillus, including Lactobacillus salivarius, Lactobacillus mucosae and Lactobacillus delbrueckii. Four isolates were closely related to Mitsuokella jalaludinii. Lactic acid producing bacteria (LAB) from the equine gastrointestinal tract was dominated by representatives from the genus Lactobacillus, but also included D-lactate-producing bacteria closely related to M. jalaludinii. Identification and characterization of LAB from the equine gastrointestinal tract should contribute to our understanding and management of fermentative acidosis, ulceration of the stomach and laminitis. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Hyaluronic acid is routinely produced through fermentation of both Group A and C streptococci. Despite significant production costs associated with short fermentations and removal of contaminating proteins released during entry into stationary phase, hyaluronic acid is typically produced in batch rather than continuous culture. The main reason is that hyaluronic acid synthesis has been found to be unstable in continuous culture except at very low dilution rates. Here, we investigated the mechanisms underlying this instability and developed a stable, high dilution rate (0.4 h(-1)) chemostat process for both chemically defined and complex media operating for more than 150 h of production. In chemically defined medium, the product yield was 25% higher in chemostat cultures than in conventional batch culture when arginine or glucose was the limiting substrate. In contrast, glutamine limitation resulted in higher ATP requirements and a yield similar to that observed in batch culture. In complex, glucose-limited medium, ATP requirements were greatly reduced but biomass synthesis was favored over hyaluronic acid and no improvement in hyaluronic acid yield was observed. The successful establishment of continuous culture at high dilution rate enables both commercial production at reduced cost and a more rational characterization and optimization of hyaluronic acid production in streptococci. (c) 2005 Wiley Periodicals, Inc.
Resumo:
We have investigated the lipid polylysine core peptide (LCP) system as a self-adjuvanting group A streptococcal (GAS) vaccine delivery approach. LCP constructs were synthesised incorporating peptides from the M protein conserved carboxy terminal C-repeat region, the amino terminal type-specific region and from both of these regions. Immunisation with the constructs without adjuvant led to the induction of peptide-specific serum IgG antibody responses, heterologous opsonic antibodies, and complete protection from GAS infection. These data indicate that protective immunity to GAS infection can be evoked using the self-adjuvanting LCP system, and point to the potential application of this system in human mucosal GAS vaccine development. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Hyaluronic acid (HA) is a commercially valuable medical biopolymer increasingly produced through microbial fermentation. Viscosity limits product yield and the focus of research and development has been on improving the key quality parameters, purity and molecular weight. Traditional strain and process optimisation has yielded significant improvements, but appears to have reached a limit. Metabolic engineering is providing new opportunities and HA produced in a heterologous host is about to enter the market. In order to realise the full potential of metabolic engineering, however, greater understanding of the mechanisms underlying chain termination is required.
Resumo:
In the horse, carbohydrate overload is thought to play an integral role in the onset of laminitis by drastically altering the profile of bacterial populations in the hindgut. The objectives of this study were to develop and validate microbial ecology methods to monitor changes in bacterial populations throughout the course of experimentally induced laminitis and to identify the predominant oligofructose-utilizing organisms. Laminitis was induced in five horses by administration of oligofructose. Faecal specimens were collected at 8 h intervals from 72 h before to 72 h after the administration of oligofructose. Hindgut microbiota able to utilize oligofructose were enumerated throughout the course of the experiment using habitat-simulating medium. Isolates were collected and representatives identified by 16S rRNA gene sequencing. The majority of these isolates collected belonged to the genus Streptococcus, 91% of which were identified as being most closely related to Streptococcus infantarius ssp. coli. Furthermore, S. infantarius ssp. coli was the predominant oligofructose-utilizing organism isolated before the onset of lameness. Fluorescence in situ hybridization probes developed to specifically target the isolated Streptococcus spp. demonstrated marked population increases between 8 and 16 h post oligofructose administration. This was followed by a rapid population decline which corresponded with a sharp decline in faecal pH and subsequently lameness at 24-32 h post oligofructose administration. This research suggests that streptococci within the Streptococcus bovis/equinus complex may be involved in the series of events which precede the onset of laminitis in the horse.
Resumo:
Clostridium difficile is a bacterial healthcare-associated infection, which houseflies Musca domestica may transfer due to their synanthropic nature. The aims of this thesis were to determine the ability of M. domestica to transfer C. difficile mechanically and to collect and identify flying insects in UK hospitals and classify any associated bacteria. M. domestica exposed to independent suspensions of vegetative cells and spores of C. difficile were able to mechanically transfer the bacteria on to agar for up to 4 hours following exposure. C. difficile could be recovered from fly excreta for 96hrs and was isolated from the M. domestica alimentary canal. Also confirmed was the carriage of C. difficile by M. domestica larvae, although it was not retained in the pupae or in the adults that subsequently developed. Flying insects were collected from ultra-violet light flytraps in hospitals. Flies (order Diptera) were the most commonly identified. Chironomidae were the most common flies, Calliphora vicina were the most common synanthropic fly and ‘drain flies’ were surprisingly numerous and represent an emerging problem in hospitals. External washings and macerates of flying insects were prepared and inoculated onto a variety of agars and following incubation bacterial colonies identified by biochemical tests. A variety of flying insects, including synanthropic flies (e.g. M. domestica and C. vicina) collected from UK hospitals harboured pathogenic bacteria of different species. Enterobacteriaceae were the group of bacteria most commonly isolated, followed by Bacillus spp, Staphylococci, Clostridia, Streptococci and Micrococcus spp. This study highlights the potential for M. domestica to contribute to environmental persistence and spread of C. difficile in hospitals. Also illustrated is the potential for flying insects to contribute to environmental persistence and spread of other pathogenic bacteria in hospitals and therefore the need to implement pest control as part of infection control strategies.
Resumo:
La mastitis infecciosa es una patología común durante la lactancia y constituye una de las primeras causas de destete precoz. Por tanto, debería ser considerada un problema de Salud Pública relevante, ya que priva a la pareja madre-hijo de los incuestionables beneficios que la lactancia proporciona. No obstante, la mastitis humana ha sido hasta la fecha una enfermedad subestimada e infradiagnosticada, ya que habitualmente sólo se consideran mastitis los casos agudos que cursan con una sintomatología evidente y su diagnóstico microbiológico no se realiza de forma rutinaria. La etiopatogenia de la mastitis se ha relacionado con un proceso de disbiosis en la glándula mamaria, que da lugar al sobrecrecimiento de ciertas especies presentes en la leche humana. Sin embargo, la ausencia de un diagnóstico microbiológico rutinario de la leche humana hace que los estudios microbiológicos sobre esta patología sean muy escasos y que se desconozca el papel que juegan muchos agentes etiológicos. En este trabajo, el análisis microbiológico de 1.849 muestras de leche materna procedentes de mujeres con mastitis ha revelado que el género Staphylococcus constituye el primer grupo microbiano implicado en esta patología, siendo Staphylococcus epidermidis la especie aislada con mayor frecuencia (91,56% de las muestras). La especie Staphylococcus aureus se detectó en el 29,74% de los casos. Los géneros Streptocococcus y Corynebacterium constituyeron, respectivamente, el segundo (70,20%) y tercer (16,60%) grupo microbiano con mayor prevalencia en este estudio. Estos resultados ponen de manifiesto que los estafilococos coagulasa-negativos, los estreptococos del grupo viridans y las corinebacterias, habitualmente considerados microorganismos comensales y subestimados como causa de mastitis humanas, tienen un papel relevante como agentes etiológicos de esta patología. Este hecho avala que el análisis microbiológico de la leche, identificando los agentes causales a nivel de especie, es el único medio posible para obtener un diagnóstico etiológico preciso y establecer un tratamiento eficaz para la mastitis...
Resumo:
SIQUEIRA JR. et al. Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., v. 104, n. 1, p. 122-130, 2007.
Resumo:
SIQUEIRA JR. et al. Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., v. 104, n. 1, p. 122-130, 2007.