926 resultados para Variable-variable two dimensional spectroscopy (VV 2D)
Resumo:
In this paper we have studied the flow of a micropolar fluid, whose constitutive equations were given by Eringen, in two dimensional plane flow. In two notes, we have discussed the validity of the boundary condition v=a ω and its effect on the entire flow field. We have restricted our study to the case when Stokes' approximation is valid, i. e. slow motion for it is difficult to uncouple the equations in the most general case.
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The unsteady laminar free convection boundary layer flows around two-dimensional and axisymmetric bodies placed in an ambient fluid of infinite extent have been studied when the flow is driven by thermal buoyancy forces and buoyancy forces from species diffusion. The unsteadiness in the flow field is caused by both temperature and concentration at the wall which vary arbitrarily with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. Computations have been performed for a circular cylinder and a sphere. The skin friction, heat transfer and mass transfer are strongly dependent on the variation of the wall temperature and concentration with time. Also the skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist and oppose, respectively, the thermal buoyancy force, whereas the mass transfer rate is higher for small values of the ratio of the buoyancy parameters than for large values. The local heat and mass transfer rates are maximum at the stagnation point and they decrease progressively with increase of the angular position from the stagnation point.
Resumo:
The unsteady laminar free convection flow of an incompressible electrically conducting fluid over two-dimensional and axisymmetric bodies embedded in a highly porous medium with an applied magnetic field has been studied. The unsteadiness in the flow field is caused by the variation of the wall temperature and concentration with time. The coupled nonlinear partial differential equations with three independent variables have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. It is observed that the skin friction, heat transfer and mass transfer increase with the permeability parameter but decrease with the magnetic parameter. The results are strongly dependent on the variation of wall temperature and concentration with time. The skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist or oppose the thermal buoyancy force. However, the mass transfer is found to be higher for small values of the ratio of the buoyancy parameters than for large values
Resumo:
We study the occurrence of nonclassical rotational inertia (NCRI) arising from superfluidity along grain boundaries in a two-dimensionalbosonic system. We make use of a standard mapping between the zero-temperature properties of this system and the statistical mechanics of interacting vortex lines in the mixed phase of a type-II superconductor. In the mapping, the liquid phase of the vortex system corresponds to the superfluid bosonic phase. We consider numerically obtained polycrystalline configurations of the vortex lines in which the microcrystals are separated by liquidlike grain-boundary regions which widen as the vortex system temperature increases. The NCRI of the corresponding zero-temperature bosonic systems can then be numerically evaluated by solving the equations of superfluid hydrodynamics in the channels near the grain boundaries. We find that the NCRI increases very abruptly as the liquid regions in the vortex system (equivalently, superfluid regions in the bosonic system) form a connected, system-spanning structure with one or more closed loops. The implications of these results for experimentally observed supersolid phenomena are discussed.
Resumo:
Electrical and magnetic properties of several oxide systems of K2NiF4 structure have been compared to those of the corresponding perovskites. Members of the La1−xSr1+xCoO4 system are all semiconductors with a high activation energy for conduction unlike La1−xSrxCoO3 (x ≥ 0.3) which is metallic; the latter oxides are ferromagnetic. La0.5Sr1.5CoO4 shows a magnetization of 0.5 μB at 0 K (compared to 1.5 μB of La0.5Sr0.5CoO3), but the high-temperature susceptibilities of the two systems are comparable. In SrO · (La0.5Sr0.5MnO3)n, both magnetization and electrical conductivity increase with the increase in n approaching the value of the perovskite La0.5Sr0.5MnO3. LaSrMn0.5Ni0.5(Co0.5)O4 shows no evidence of long-range ferromagnetic ordering unlike the perovskite LaMn0.5Ni0.5(Co0.5)O3; high-temperature susceptibility behavior of these two insulating systems is, however, similar. LaSr1−xBaxNiO4 exhibits high electrical resistivity with the resistivity increasing proportionately with the magnetic susceptibility (note that LaNiO3 is a Pauli-paramagnetic metal). High-temperature susceptibility of LaSrNiO4 and LaNiO3 are comparable. Susceptibility measurements show no evidence for long-range ordering in LaSrFe1−xNixO4 unlike in LaFe1−xNixO3 (x ≤ 0.35) and the electrical resistivity of the former is considerably higher. Electrical resistivity of Sr2RuO4 is more than an order of magnitude higher than that of SrRuO3. Some generalizations of the properties of two- and three-dimensional oxide systems have emerged from these experimental observations.
Resumo:
Randomly diluted quantum boson and spin models in two dimensions combine the physics of classical percolation with the well-known dimensionality dependence of ordering in quantum lattice models. This combination is rather subtle for models that order in two dimensions but have no true order in one dimension, as the percolation cluster near threshold is a fractal of dimension between 1 and 2: two experimentally relevant examples are the O(2) quantum rotor and the Heisenberg antiferromagnet. We study two analytic descriptions of the O(2) quantum rotor near the percolation threshold. First a spin-wave expansion is shown to predict long-ranged order, but there are statistically rare points on the cluster that violate the standard assumptions of spin-wave theory. A real-space renormalization group (RSRG) approach is then used to understand how these rare points modify ordering of the O(2) rotor. A new class of fixed points of the RSRG equations for disordered one-dimensional bosons is identified and shown to support the existence of long-range order on the percolation backbone in two dimensions. These results are relevant to experiments on bosons in optical lattices and superconducting arrays, and also (qualitatively) for the diluted Heisenberg antiferromagnet La-2(Zn,Mg)(x)Cu1-xO4.
Resumo:
A two-dimensional model is proposed for taking into account the establishment of contact on the compression side of crack faces in plates under bending. An approximate but simple method is developed for evaluating reduction of stress intensity factor due to such ‘crack closure’. Analysis is first carried out permitting interference of the crack faces. Contact forces are then introduced on the crack faces and their magnitudes determined from the consideration that the interference is just eliminated. The method is based partly on finite element analysis and partly on a continuum analysis using Irwin's solution for point loads on the crack line.
Double Diffusive Non-Darcy Free-Convection From Two-Dimensional And Axisymmetric-Bodies Of Arbitrary
Resumo:
The unsteady laminar incompressible mixed convection flow over a two-dimensional body (cylinder) and an axisymmetric body (sphere) has been studied when the buboyancy forces arise from both thermal and mass diffusion and the unsteadiness in the flow field is introduced by the time dependent free stream velocity. The nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. The results indicate that for the thermally assisting flow the local skin friction, heat transfer and mass diffusion are enhanced when the buoyancy force from mass diffusion assists the thermal buoyancy force. But this trend is opposite for the thermally opposing flow. The point of zero skin friction moves upstream due to unsteadiness. No singularity is observed at the point of zero skin friction for unsteady flow unlike steady flow. The flow reversal is observed after a certain instant of time. The velocity overshoot occurs for assisting flows.
Resumo:
We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.