987 resultados para Valvular prosthesis
Resumo:
"History of fixed partial prostheses, by Claude Rowe Baker": p. 1-14.
Resumo:
Conclusion. The new Provox(R) NID (TM) non- indwelling voice prosthesis investigated in this study provides a good option for laryngectomized patients using non- indwelling voice prostheses and can potentially improve safety and increase patients' satisfaction with their voice and speech. Objective. To investigate the feasibility of and patient satisfaction with the Provox NID non- indwelling voice prosthesis. Material and methods. Pre- and post- study questionnaires were used to evaluate the patients' former voice prosthesis and the Provox NID voice prosthesis. In addition, measurements of pull- out force, maximum phonation time and loudness were made for both voice prostheses. In vitro measurements of airflow characteristics were also made. Following a 6- week trial, all patients provided feedback on the new voice prosthesis and the results were used to further improve the Provox NID. This final version of the new voice prosthesis was subsequently trialled and evaluated by 10 patients 6 months later. Results. Overall results showed that patient satisfaction with the Provox NID non- indwelling voice prosthesis was favourable. The pull- out force for the new prosthesis was significantly higher than that for the formerly used prosthesis and its aerodynamic characteristics were better.
Resumo:
Ultra wideband (UWB) radar has been extensively investigated both theoretically and practically for the identification buried artifacts. Ground probe radar (GPR) concentrates on the identification of lightly buried land mines, unexploded ordnance (UXO) and archeological targets. The same technology is proposed in a similar context for the rapid identification of in vivo implanted metallic prostheses. The technique is based on resonance based target identification and the paper investigates UWB scattering from a metallic hip prosthesis in free space as a first step in the identification process.
Resumo:
The diagnosis of prosthetic joint infection and its differentiation from aseptic loosening remains problematic. The definitive laboratory diagnostic test is the recovery of identical infectious agents from multiple intraoperative tissue samples; however, interpretation of positive cultures is often complex as infection is frequently associated with low numbers of commensal microorganisms, in particular the coagulase-negative staphylococci (CNS). In this investigation, the value of serum procalcitonin (PCT), interleukin-6 (IL-6) and soluble intercellular adhesion molecule-1 (sICAM-1) as predictors of infection in revision hip replacement surgery is assessed. Furthermore, the diagnostic value of serum IgG to short-chain exocellular lipoteichoic acid (sce-LTA) is assessed in patients with infection due to CNS. Presurgical levels of conventional serum markers of infection including C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and white blood cell count (WBC) is also established. Forty-six patients undergoing revision hip surgery were recruited with a presumptive clinical diagnosis of either septic (16 patients) or aseptic loosening (30 patients). The diagnosis was confirmed microbiologically and levels of serum markers were determined. Serum levels of IL-6 and sICAM-1 were significantly raised in patients with septic loosening (P=0.001 and P=0.0002, respectively). Serum IgG to sce-LTA was elevated in three out of four patients with infection due to CNS. In contrast, PCT was not found to be of value in differentiating septic and aseptic loosening. Furthermore, CRP, ESR and WBC were significantly higher (P=0.0001, P=0.0001 and P=0.003, respectively) in patients with septic loosening. Serum levels of IL-6, sICAM-1 and IgG to sce-LTA may provide additional information to facilitate the diagnosis of prosthetic joint infection.
Resumo:
Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-t , explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-t environments.
Resumo:
Total knee arthroplasty (TKA) has revolutionized the life of millions of patients and it is the most efficient treatment in cases of osteoarthritis. The increase in life expectancy has lowered the average age of the patient, which requires a more enduring and performing prosthesis. To improve the design of implants and satisfying the patient's needs, a deep understanding of the knee Biomechanics is needed. To overcome the uncertainties of numerical models, recently instrumented knee prostheses are spreading. The aim of the thesis was to design and manifacture a new prototype of instrumented implant, able to measure kinetics and kinematics (in terms of medial and lateral forces and patellofemoral forces) of different interchangeable designs of prosthesis during experiments tests within a research laboratory, on robotic knee simulator. Unlike previous prototypes it was not aimed for industrial applications, but purely focusing on research. After a careful study of the literature, and a preliminary analytic study, the device was created modifying the structure of a commercial prosthesis and transforming it in a load cell. For monitoring the kinematics of the femoral component a three-layers, piezoelettric position sensor was manifactured using a Velostat foil. This sensor has responded well to pilot test. Once completed, such device can be used to validate existing numerical models of the knee and of TKA and create new ones, more accurate.It can lead to refinement of surgical techniques, to enhancement of prosthetic designs and, once validated, and if properly modified, it can be used also intraoperatively.
Resumo:
BACKGROUND: Reconstruction of the distal femur after resection for malignant bone tumors in skeletally immature children is challenging. The use of megaprostheses has become increasingly popular in this patient group since the introduction of custom-made, expandable devices that do not require surgery for lengthening, such as the Repiphysis(®) Limb Salvage System. Early reports on the device were positive but more recently, a high complication rate and associated bone loss have been reported. QUESTIONS/PURPOSES: We asked: (1) what are the clinical outcomes using the Musculoskeletal Tumor Society (MSTS) scoring system after 5-year minimum followup in patients treated with this prosthesis at one center; (2) what are the problems and complications associated with the lengthening procedures of this implant; and (3) what are the specific concerns associated with revision of this implant? METHODS: At our institute, between 2002 and 2007, the Repiphysis(®) expandable prosthesis was implanted in 15 children (mean age, 8 years; range, 6-11 years) after distal femoral resection for malignant bone tumors. During this time, the general indication for use of this implant was resection of the distal femur for localized malignant bone tumors in pediatric patients. Alternative techniques used for this indication were modular prosthetic reconstruction, massive (osteoarticular or intercalary) allograft reconstruction, or rotationplasty. Age and tumor extension were the main factors to decide on the surgical indication. Of the 15 patients who had this prosthesis implanted during reconstruction surgery, five died with the implant in situ or underwent amputation before 5 years followup and the remaining 10 were evaluated at a minimum of 5 years (mean, 104 months; range, 78-140 months). No patients were lost to followup. These 10 patients were long-term survivors and underwent the lengthening program. They were included in our study analysis. The first seven lengthening procedures were attempted in an outpatient setting; however, owing to pain and burning sensations experienced by the patients, the procedures failed to achieve the desired lengthening. Therefore, other procedures were performed with the patients under general anesthesia. We reviewed clinical data at index surgery for all 15 patients. We further analyzed the lengthening procedures, implant survival, radiographic and functional results, for the 10 long-term survivors. Functional results were assessed according to the MSTS scoring system. Complications were classified according to the International Society of Limb Salvage (ISOLS) classification system. RESULTS: Nine of the 10 survivors underwent revision of the implant for mechanical failure. They had a mean MSTS score of 64% (range, 47%-87%) before revision surgery. At final followup the 10 long-term surviving patients had an average MSTS score of 81% (range, 53%-97%). In total, we obtained an average lengthening of 39 mm per patient (range, 17-67 mm). Exact expansion of the implant was unpredictable and difficult to control. Nine of 10 of the long-term surviving patients underwent revision surgery of the prosthesis-eight for implant breakage and one for stem loosening. At revision surgery, six patients had another type of expandable prosthesis implanted and three had an adult-type megaprosthesis implanted. In five cases, segmental bone grafts were used during revision surgery to compensate for loss of bone stock. CONCLUSIONS: We could not comfortably expand the Repiphysis(®) prosthesis in an outpatient setting because of pain experienced by the patients during the lengthening procedures. Furthermore, use of the prosthesis was associated with frequent failures related to implant breakage and stem loosening. Revisions of these procedures were complex and difficult. We no longer use this prosthesis and caution others against the use of this particular prosthesis design. LEVEL OF EVIDENCE: Level IV, therapeutic study.
Resumo:
Inguinal hernia repair is one of the most common surgical procedure performed in Western countries and it consumes a lot of healthcare resources. Several types of different mesh are now disposable and tension-free techniques represent the “golden standard”. In our study, fifty male patients were operated on for inguinal hernia and a PAD (i.e., dynamic self-regulating prosthesis) used for the repair of the inguinal defect: this technique demonstrated to be safe, effective and easy to perform.
Resumo:
BACKGROUND: Reconstruction of the distal femur after resection for malignant bone tumors in skeletally immature children is challenging. The use of megaprostheses has become increasingly popular in this patient group since the introduction of custom-made, expandable devices that do not require surgery for lengthening, such as the Repiphysis(®) Limb Salvage System. Early reports on the device were positive but more recently, a high complication rate and associated bone loss have been reported. QUESTIONS/PURPOSES: We asked: (1) what are the clinical outcomes using the Musculoskeletal Tumor Society (MSTS) scoring system after 5-year minimum followup in patients treated with this prosthesis at one center; (2) what are the problems and complications associated with the lengthening procedures of this implant; and (3) what are the specific concerns associated with revision of this implant? METHODS: At our institute, between 2002 and 2007, the Repiphysis(®) expandable prosthesis was implanted in 15 children (mean age, 8 years; range, 6-11 years) after distal femoral resection for malignant bone tumors. During this time, the general indication for use of this implant was resection of the distal femur for localized malignant bone tumors in pediatric patients. Alternative techniques used for this indication were modular prosthetic reconstruction, massive (osteoarticular or intercalary) allograft reconstruction, or rotationplasty. Age and tumor extension were the main factors to decide on the surgical indication. Of the 15 patients who had this prosthesis implanted during reconstruction surgery, five died with the implant in situ or underwent amputation before 5 years followup and the remaining 10 were evaluated at a minimum of 5 years (mean, 104 months; range, 78-140 months). No patients were lost to followup. These 10 patients were long-term survivors and underwent the lengthening program. They were included in our study analysis. The first seven lengthening procedures were attempted in an outpatient setting; however, owing to pain and burning sensations experienced by the patients, the procedures failed to achieve the desired lengthening. Therefore, other procedures were performed with the patients under general anesthesia. We reviewed clinical data at index surgery for all 15 patients. We further analyzed the lengthening procedures, implant survival, radiographic and functional results, for the 10 long-term survivors. Functional results were assessed according to the MSTS scoring system. Complications were classified according to the International Society of Limb Salvage (ISOLS) classification system. RESULTS: Nine of the 10 survivors underwent revision of the implant for mechanical failure. They had a mean MSTS score of 64% (range, 47%-87%) before revision surgery. At final followup the 10 long-term surviving patients had an average MSTS score of 81% (range, 53%-97%). In total, we obtained an average lengthening of 39 mm per patient (range, 17-67 mm). Exact expansion of the implant was unpredictable and difficult to control. Nine of 10 of the long-term surviving patients underwent revision surgery of the prosthesis-eight for implant breakage and one for stem loosening. At revision surgery, six patients had another type of expandable prosthesis implanted and three had an adult-type megaprosthesis implanted. In five cases, segmental bone grafts were used during revision surgery to compensate for loss of bone stock. CONCLUSIONS: We could not comfortably expand the Repiphysis(®) prosthesis in an outpatient setting because of pain experienced by the patients during the lengthening procedures. Furthermore, use of the prosthesis was associated with frequent failures related to implant breakage and stem loosening. Revisions of these procedures were complex and difficult. We no longer use this prosthesis and caution others against the use of this particular prosthesis design. LEVEL OF EVIDENCE: Level IV, therapeutic study.
Resumo:
Poster presented at the First international Congress of CiiEM - From Basic Sciences to Clinical Research. Egas MOniz, Caparica, Portugal, 27-28 November 2015
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
1.1 Edoxaban is recommended, within its marketing authorisation, as an option for preventing stroke and systemic embolism in adults with non-valvular atrial fibrillation with one or more risk factors, including: congestive heart failure hypertension diabetes prior stroke or transient ischaemic attack age 75 years or older
Resumo:
Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-:τ: explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-:τ: environments.^