813 resultados para VISUAL INSPECTION METHODS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a photometric catalogue of compact groups of galaxies (p2MCGs) automatically extracted from the Two-Micron All Sky Survey (2MASS) extended source catalogue. A total of 262 p2MCGs are identified, following the criteria defined by Hickson, of which 230 survive visual inspection (given occasional galaxy fragmentation and blends in the 2MASS parent catalogue). Only one quarter of these 230 groups were previously known compact groups (CGs). Among the 144 p2MCGs that have all their galaxies with known redshifts, 85 (59?per cent) have four or more accordant galaxies. This v2MCG sample of velocity-filtered p2MCGs constitutes the largest sample of CGs (with N = 4) catalogued to date, with both well-defined selection criteria and velocity filtering, and is the first CG sample selected by stellar mass. It is fairly complete up to Kgroup similar to 9 and radial velocity of similar to 6000?km?s-1. We compared the properties of the 78 v2MCGs with median velocities greater than 3000?km?s-1 with the properties of other CG samples, as well as those (mvCGs) extracted from the semi-analytical model (SAM) of Guo et al. run on the high-resolution Millennium-II simulation. This mvCG sample is similar (i.e. with 2/3 of physically dense CGs) to those we had previously extracted on three other SAMs run on the Millennium simulation with 125 times worse spatial and mass resolutions. The space density of v2MCGs within 6000?km?s-1 is 8.0 X 10-5?h3?Mpc-3, i.e. four times that of the Hickson sample [Hickson Compact Group (HCG)] up to the same distance and with the same criteria used in this work, but still 40?per cent less than that of mvCGs. The v2MCG constitutes the first group catalogue to show a statistically large firstsecond ranked galaxy magnitude gap according to TremaineRichstone statistics, as expected if the first ranked group members tend to be the products of galaxy mergers, and as confirmed in the mvCGs. The v2MCG is also the first observed sample to show that first-ranked galaxies tend to be centrally located, again consistent with the predictions obtained from mvCGs. We found no significant correlation of group apparent elongation and velocity dispersion in the quartets among the v2MCGs, and the velocity dispersions of apparently round quartets are not significantly larger than those of chain-like ones, in contrast to what has been previously reported in HCGs. By virtue of its automatic selection with the popular Hickson criteria, its size, its selection on stellar mass, and its statistical signs of mergers and centrally located brightest galaxies, the v2MCG catalogue appears to be the laboratory of choice to study physically dense groups of four or more galaxies of comparable luminosity.
Resumo:
VISTA Variables in the Via Lactea (VVV) is an ESO variability survey that is performing observations in near-infrared bands (ZY JHK(s)) toward the Galactic bulge and part of the disk with the completeness limits at least 3 mag deeper than Two Micron All Sky Survey. In the present work, we searched in the VVV survey data for background galaxies near the Galactic plane using ZY JHK(s) photometry that covers 1.636 deg(2). We identified 204 new galaxy candidates by analyzing colors, sizes, and visual inspection of multi-band (ZY JHK(s)) images. The galaxy candidate colors were also compared with the predicted ones by star count models considering a more realistic extinction model at the same completeness limits observed by VVV. A comparison of the galaxy candidates with the expected one by Millennium simulations is also presented. Our results increase the number density of known galaxies behind the Milky Way by more than one order of magnitude. A catalog with galaxy properties including ellipticity, Petrosian radii, and ZY JHK(s) magnitudes is provided, as well as comparisons of the results with other surveys of galaxies toward the Galactic plane.
Resumo:
Biological processes are very complex mechanisms, most of them being accompanied by or manifested as signals that reflect their essential characteristics and qualities. The development of diagnostic techniques based on signal and image acquisition from the human body is commonly retained as one of the propelling factors in the advancements in medicine and biosciences recorded in the recent past. It is a fact that the instruments used for biological signal and image recording, like any other acquisition system, are affected by non-idealities which, by different degrees, negatively impact on the accuracy of the recording. This work discusses how it is possible to attenuate, and ideally to remove, these effects, with a particular attention toward ultrasound imaging and extracellular recordings. Original algorithms developed during the Ph.D. research activity will be examined and compared to ones in literature tackling the same problems; results will be drawn on the base of comparative tests on both synthetic and in-vivo acquisitions, evaluating standard metrics in the respective field of application. All the developed algorithms share an adaptive approach to signal analysis, meaning that their behavior is not dependent only on designer choices, but driven by input signal characteristics too. Performance comparisons following the state of the art concerning image quality assessment, contrast gain estimation and resolution gain quantification as well as visual inspection highlighted very good results featured by the proposed ultrasound image deconvolution and restoring algorithms: axial resolution up to 5 times better than algorithms in literature are possible. Concerning extracellular recordings, the results of the proposed denoising technique compared to other signal processing algorithms pointed out an improvement of the state of the art of almost 4 dB.
Resumo:
A single picture provides a largely incomplete representation of the scene one is looking at. Usually it reproduces only a limited spatial portion of the scene according to the standpoint and the viewing angle, besides it contains only instantaneous information. Thus very little can be understood on the geometrical structure of the scene, the position and orientation of the observer with respect to it remaining also hard to guess. When multiple views, taken from different positions in space and time, observe the same scene, then a much deeper knowledge is potentially achievable. Understanding inter-views relations enables construction of a collective representation by fusing the information contained in every single image. Visual reconstruction methods confront with the formidable, and still unanswered, challenge of delivering a comprehensive representation of structure, motion and appearance of a scene from visual information. Multi-view visual reconstruction deals with the inference of relations among multiple views and the exploitation of revealed connections to attain the best possible representation. This thesis investigates novel methods and applications in the field of visual reconstruction from multiple views. Three main threads of research have been pursued: dense geometric reconstruction, camera pose reconstruction, sparse geometric reconstruction of deformable surfaces. Dense geometric reconstruction aims at delivering the appearance of a scene at every single point. The construction of a large panoramic image from a set of traditional pictures has been extensively studied in the context of image mosaicing techniques. An original algorithm for sequential registration suitable for real-time applications has been conceived. The integration of the algorithm into a visual surveillance system has lead to robust and efficient motion detection with Pan-Tilt-Zoom cameras. Moreover, an evaluation methodology for quantitatively assessing and comparing image mosaicing algorithms has been devised and made available to the community. Camera pose reconstruction deals with the recovery of the camera trajectory across an image sequence. A novel mosaic-based pose reconstruction algorithm has been conceived that exploit image-mosaics and traditional pose estimation algorithms to deliver more accurate estimates. An innovative markerless vision-based human-machine interface has also been proposed, so as to allow a user to interact with a gaming applications by moving a hand held consumer grade camera in unstructured environments. Finally, sparse geometric reconstruction refers to the computation of the coarse geometry of an object at few preset points. In this thesis, an innovative shape reconstruction algorithm for deformable objects has been designed. A cooperation with the Solar Impulse project allowed to deploy the algorithm in a very challenging real-world scenario, i.e. the accurate measurements of airplane wings deformations.
Resumo:
The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.
Resumo:
The understanding of the coupling between superconducting YBa2Cu3O7 (YBCO) layers decoupled by non superconducting PrBa2Cu3O7 (PBCO) layers in c-axis oriented superlattices was the aim of this thesis. For this purpose two conceptually different kind of transport experiments have been performed. rnrnIn the first type of transport experiments the current is flowing parallel to the layers. Here the coupling is probed indirectly using magnetic vortex lines, which are penetrating the superlattice. Movement of the vortex segments in neighbouring YBCO layers is more or less coherent depending on the thickness of both the superconducting and non superconducting layers. This in-plane transport was measured either by sending an external current through bridges patterned in the superlattice or by an induced internal current. rnThe vortex-creep activation energy U was determined by analysis of the in-plane resistive transition in an external magnetic field B oriented along the c-axis. The activation energies for two series of superlattices were investigated. In one series the thickness of the YBCO layers was constant (nY=4 unit cells) and the number of the PBCO unit cells was varied, while in the other the number of PBCO layers was constant (nP=4) and nY varied. The correlation length of the vortex system was determined to be 80 nm along the c-axis direction. It was found that even a single PBCO unit cell in a superlattice effectively cuts the flux lines into shorter weakly coupled segments, and the coupling of the vortex systems in neighbouring layers is negligible already for a thickness of four unit cells of the PBCO layers. A characteristic variation of the activation energy for the two series of superlattices was found, where U0 is proportional to the YBCO thickness. A change in the variation of U0 with the current I in the specimen was observed, which can be explained in terms of a crossover in the vortex creep process, generated by the transport current. At low I values the dislocations mediated (plastic) vortex creep leads to thermally assisted flux-flow behaviour, whereas at high current the dc transport measurements are dominated by elastic (collective) creep.rnThe analysis of standard dc magnetization relaxation data obtained for a series superlattices revealed the occurrence of a crossover from elastic (collective) vortex creep at low temperature to plastic vortex creep at high T. The crossover is generated by the T dependent macroscopic currents induced in the sample. The existence of this creep crossover suggests that, compared with the well known Maley technique, the use of the normalized vortex creep activation energy is a better solution for the determination of vortex creep parameters.rnrnThe second type of transport experiments was to measure directly a possible Josephson coupling between superconducting CuO2 double planes in the superlattices by investigation of the transport properties perpendicular to the superconducting planes. Here three different experiments have been performed. The first one was to pattern mesa structures photolithographically as in previous works. The second used three-dimensional nanostructures cut by a focused ion beam. For the these two experiments insufficient patterning capabilities prevented an observation of the Josephson effect in the current voltage curves. rnA third experiment used a-axis and (110) oriented YBCO films, where in-plane patterning can in principle be sufficient to measure transport perpendicular to the superconducting planes. Therefore the deposition of films with this unusual growth orientation was optimized and investigated. The structural and microstructural evolution of c-axis to a-axis orientation was monitored using x-ray diffraction, scanning electron microscopy and magnetization measurements. Films with full a-axis alignment parallel to the substrate normal could be achieved on (100)SrTiO3. Due to the symmetry of the substrate the c-axis direction in-plane is twofold. Transferring the deposition conditions to films grown on (110)SrTiO3 allowed the growth of (110) oriented YBCO films with a unique in-plane c-axis orientation. While these films were of high quality by crystallographic and macroscopic visual inspection, electron microscopy revealed a coherent crack pattern on a nanoscale. Therefore the actual current path in the sample was not determined by the macroscopic patterning which prohibited investigations of the in-plane anisotropy in this case.rn
Resumo:
To derive tests for randomness, nonlinear-independence, and stationarity, we combine surrogates with a nonlinear prediction error, a nonlinear interdependence measure, and linear variability measures, respectively. We apply these tests to intracranial electroencephalographic recordings (EEG) from patients suffering from pharmacoresistant focal-onset epilepsy. These recordings had been performed prior to and independent from our study as part of the epilepsy diagnostics. The clinical purpose of these recordings was to delineate the brain areas to be surgically removed in each individual patient in order to achieve seizure control. This allowed us to define two distinct sets of signals: One set of signals recorded from brain areas where the first ictal EEG signal changes were detected as judged by expert visual inspection ("focal signals") and one set of signals recorded from brain areas that were not involved at seizure onset ("nonfocal signals"). We find more rejections for both the randomness and the nonlinear-independence test for focal versus nonfocal signals. In contrast more rejections of the stationarity test are found for nonfocal signals. Furthermore, while for nonfocal signals the rejection of the stationarity test increases the rejection probability of the randomness and nonlinear-independence test substantially, we find a much weaker influence for the focal signals. In consequence, the contrast between the focal and nonfocal signals obtained from the randomness and nonlinear-independence test is further enhanced when we exclude signals for which the stationarity test is rejected. To study the dependence between the randomness and nonlinear-independence test we include only focal signals for which the stationarity test is not rejected. We show that the rejection of these two tests correlates across signals. The rejection of either test is, however, neither necessary nor sufficient for the rejection of the other test. Thus, our results suggest that EEG signals from epileptogenic brain areas are less random, more nonlinear-dependent, and more stationary compared to signals recorded from nonepileptogenic brain areas. We provide the data, source code, and detailed results in the public domain.
Resumo:
BACKGROUND: Retinochoroiditis is the most common ocular manifestation of congenital toxoplasmosis, but other associated ophthalmological pathologies can also occur. The aim of this study was to determine the nature of the latter in treated cases of the disease and to assess their impact on visual function. METHODS: Four hundred and thirty consecutive children with serologically confirmed congenital toxoplasmosis were included in this study. Data were prospectively collected using standardized ophthalmological assessment forms. The presence of retinochoroiditis and of associated pathologies was ascertained, and their impact on visual function was assessed. RESULTS: After a median follow-up of 12 years [range 0.6-26 years], 130 children manifested retinochoroiditis. We detected 22 foci of retinochoroiditis at birth and 264 additional ones during the follow-up period. Of these, 48 (17%) were active when first diagnosed. Twenty-five of the 130 children (19%) had other associated ocular pathologies. Of these, 21 (16%) had a strabismus, which was due to macular lesions in 86% of the cases; 7 (5.4%) presented with unilateral microphthalmia, and 4 (3%) with cataracts. Most of these events were detected after the onset of retinochoroiditis. None of the children presented with ocular involvement in the absence of chorioretinal lesions. Macular lesions occurred more frequently in children with associated pathologies (p<0.0001), and associated pathologies were likewise more common in individuals with macular lesions (p=0.0003). Visual impairment occurred in 31/130 cases, and in all but 3 of these eyes it was due not to an associated pathology but to macular retinochoroiditis. CONCLUSIONS: At the end of the follow-up period, ocular involvement existed in 30% of the treated children with congenital toxoplasmosis. Associated eye pathologies were manifested less frequently than anticipated. They may occur later in life and are an indirect marker of the severity of congenital toxoplasmosis, but they do not have a direct impact on visual acuity. The overall functional prognosis of congenital toxoplasmosis is better than would be expected on the basis of literature findings, with only 2 of the 130 children suffering bilateral visual impairment.
Resumo:
OBJECTIVES: To demonstrate the feasibility of panoramic image subtraction for implant assessment. STUDY DESIGN: Three titanium implants were inserted into a fresh pig mandible. One intraoral and 2 panoramic images were obtained at baseline and after each of 6 incremental (0.3, 0.6, 1.0, 1.5, 2.0, 2.5 mm) removals of bone. For each incremental removal of bone, the mandible was removed from and replaced in the holding device. Images representing incremental bone removals were registered by computer with the baseline images and subtracted. Assessment of the subtraction images was based on visual inspection and analysis of structured noise. RESULTS: Incremental bone removals were more visible in intraoral than in panoramic subtraction images; however, computer-based registration of panoramic images reduced the structured noise and enhanced the visibility of incremental removals. CONCLUSION: The feasibility of panoramic image subtraction for implant assessment was demonstrated.
Resumo:
An ascent to altitude has been shown to result in more central apneas and a shift towards lighter sleep in healthy individuals. This study employs spectral analysis to investigate the impact of respiratory disturbances (central/obstructive apnea and hypopnea or periodic breathing) at moderate altitude on the sleep electroencephalogram (EEG) and to compare EEG changes resulting from respiratory disturbances and arousals. Data were collected from 51 healthy male subjects who spent 1 night at moderate altitude (2590 m). Power density spectra of Stage 2 sleep were calculated in a subset (20) of these participants with sufficient artefact-free data for (a) epochs with respiratory events without an accompanying arousal, (b) epochs containing an arousal and (c) epochs of undisturbed Stage 2 sleep containing neither arousal nor respiratory events. Both arousals and respiratory disturbances resulted in reduced power in the delta, theta and spindle frequency range and increased beta power compared to undisturbed sleep. The similarity of the EEG changes resulting from altitude-induced respiratory disturbances and arousals indicates that central apneas are associated with micro-arousals, not apparent by visual inspection of the EEG. Our findings may have implications for sleep in patients and mountain tourists with central apneas and suggest that respiratory disturbances not accompanied by an arousal may, none the less, impact sleep quality and impair recuperative processes associated with sleep more than previously believed.
Resumo:
Studied explicit memory and implicit memory performance in children, young adults, and old adults. Human Ss: 21 normal male and female Swiss preschool and school-age children (aged 4 yrs 8 mo to 6 yrs 5 mo) (Exp I). 14 normal male and female Swiss university students (Exp I). 21 normal male and female Swiss preschool and school-age children (aged 5 yrs 3 mo to 6 yrs 10 mo) (Exp II). 21 normal male and female Swiss university students (Exp II). 17 normal male and female Swiss old adults (aged 64–85 yrs) (participants in a course for senior citizens) (Exp III). 14 normal male and female Swiss old adults (aged 73–92 yrs) (nursing home residents) (Exp III). Ss participated in a simple learning task involving visual inspection or naming of pictures. Explicit memory was assessed via free recall and recognition of the stimulus material. Implicit memory was assessed with a perceptual identification task. Age differences in memory performance and in the influence of priming effects on memory performances were analyzed.
Resumo:
Quantitative EEG (qEEG) has modified our understanding of epileptic seizures, shifting our view from the traditionally accepted hyper-synchrony paradigm toward more complex models based on re-organization of functional networks. However, qEEG measurements are so far rarely considered during the clinical decision-making process. To better understand the dynamics of intracranial EEG signals, we examine a functional network derived from the quantification of information flow between intracranial EEG signals. Using transfer entropy, we analyzed 198 seizures from 27 patients undergoing pre-surgical evaluation for pharmaco-resistant epilepsy. During each seizure we considered for each network the in-, out- and total "hubs", defined respectively as the time and the EEG channels with the maximal incoming, outgoing or total (bidirectional) information flow. In the majority of cases we found that the hubs occur around the middle of seizures, and interestingly not at the beginning or end, where the most dramatic EEG signal changes are found by visual inspection. For the patients who then underwent surgery, good postoperative clinical outcome was on average associated with a higher percentage of out- or total-hubs located in the resected area (for out-hubs p = 0.01, for total-hubs p = 0.04). The location of in-hubs showed no clear predictive value. We conclude that the study of functional networks based on qEEG measurements may help to identify brain areas that are critical for seizure generation and are thus potential targets for focused therapeutic interventions.