921 resultados para VERTEBRATE LIMB
Molecular evidence from ascidians for the evolutionary origin of vertebrate cranial sensory placodes
Resumo:
Cranial sensory placodes are specialised areas of the head ectoderm of vertebrate embryos that contribute to the formation of the cranial sense organs and associated ganglia. Placodes are often considered a vertebrate innovation, and their evolution has been hypothesised as one key adaptation underlying the evolution of active predation by primitive vertebrates. Here, we review recent molecular evidence pertinent to understanding the evolutionary origin of placodes. The development of vertebrate placodes is regulated by numerous genes, including members of the Pax, Six, Eya, Fox, Phox, Neurogenin and Pou gene families. In the sea squirt Ciona intestinalis (a basal chordate and close relative of the vertebrates), orthologues of these genes are deployed in the development of the oral and atrial siphons, structures used for filter feeding by the sessile adult. Our interpretation of these findings is that vertebrate placodes and sea squirt siphon primordia have evolved from the same patches of specialised ectoderm present in the common ancestor of the chordates.
Resumo:
Cranial sensory placodes are focused areas of the head ectoderm of vertebrates that contribute to the development of the cranial sense organs and their associated ganglia. Placodes have long been considered a key character of vertebrates, and their evolution is proposed to have been essential for the evolution of an active predatory lifestyle by early vertebrates. Despite their importance for understanding vertebrate origins, the evolutionary origin of placodes has remained obscure. Here, we use a panel of molecular markers from the Six, Eya, Pax, Dach, FoxI, COE and POUIV gene families to examine the tunicate Ciona intestinalis for evidence of structures homologous to vertebrate placodes. Our results identify two domains of Ciona ectoderm that are marked by the genetic cascade that regulates vertebrate placode formation. The first is just anterior to the brain, and we suggest this territory is equivalent to the olfactoty/adenohypophyseal placodes of vertebrates. The second is a bilateral domain adjacent to the posterior brain and includes cells fated to form the atrium and atrial siphon of adult Ciona. We show this bares most similarity to placodes fated to form the vertebrate acoustico-lateralis system. We interpret these data as support for the hypothesis that sensory placodes did not arise de novo in vertebrates, but evolved froth pre-existing specialised areas of ectoderm that contributed to sensory organs in the common ancestor of vertebrate and tunicates. Published by Elsevier Inc.
Resumo:
The cephalochordate amphioxus is the best available proxy for the last common invertebrate ancestor of the vertebrates. During the last decade, the developmental genetics of amphioxus have been extensively examined for insights into the evolutionary origin and early evolution of the vertebrates. Comparisons between expression domains of homologous genes in amphioxus and vertebrates have strengthened proposed homologies between specific body parts. Molecular genetic studies have also highlighted parallels in the developmental mechanisms of amphioxus and vertebrates. In both groups, a similar nested pattern of Hox gene expression is involved in rostrocaudal patterning of the neural tube, and homologous genes also appear to be involved in dorsoventral neural patterning. Studies of amphioxus molecular biology have also hinted that the protochordate ancestor of the vertebrates included cell populations that modified their developmental genetic pathways during early vertebrate evolution to yield definitive neural crest and neurogenic placodes. We also discuss how the application of expressed sequence tag and gene-mapping approaches to amphioxus have combined with developmental studies to advance our understanding of chordate genome evolution. We conclude by considering the potential offered by the sequencing of the amphioxus genome, which was completed in late 2004.
Resumo:
1. Dispersal is regarded as critical to the stability of existing populations and the spread of invading species, but empirical data on the effect of travelling conditions during the transfer phase are rare. We present evidence that both timing and distance of ex-natal dispersal in buzzards (Buteo buteo) are strongly affected by weather. 2. Dispersal was recorded more often when the wind changed to a more southerly direction from the more common westerly winds, and when minimum temperatures were lower. The effect of wind direction was greatest in the winter and minimum temperature was most important in the autumn. Poor weather did not appear to initiate dispersal. 3. Dispersal distance was most strongly correlated with maximum temperature during dispersal and wind direction in the following 5-day period. Combined with the sex of the buzzard these three variables accounted for 60% of the variation in dispersal distance. 4. These results are important for conservationists who manage species recovery programs and wildlife managers who model biological invasions.
Resumo:
In mouse and chick embryos, cyclic expression of lunatic fringe has an important role in the regulation of mesoderm segmentation. We have isolated a Fringe gene from the protochordate amphioxus. Amphioxus is the closest living relative of the vertebrates, and has mesoderm that is definitively segmented in a manner that is similar to, and probably homologous with, that of vertebrates. AmphiFringe is placed basal to vertebrate Fringe genes in molecular phylogenetic analyses, indicating that the duplications that formed radical-, manic- and lunatic fringe are specific to the vertebrate lineage. AmphiFringe expression was detected in the anterior neural plate of early neurulae, where it resolved into a series of segmental patches by the mid-neurulae stage. No AmphiFringe transcripts were detected in the mesoderm. Based on these observations, we propose a model depicting a successive recruitment of Fringe in the maintenance then regulation of segmentation during vertebrate evolution.
Resumo:
Neuromuscular disorders affect millions of people world-wide. Upper limb tremor is a common symptom, and due to its complex aetiology it is difficult to compensate for except, in particular cases by surgical intervention or drug therapy. Wearable devices that mechanically compensate for limb tremor could benefit a considerable number of patients, but the technology to assist suffers in this way is under-developed. In this paper we propose an innovative orthosis that can dynamically suppress pathological tremor, by applying viscous damping to the affected limb in a controlled manner. The orthosis design utilises a new actuator design based on Magneto-Rheological Fluids that efficiently deliver damping action in response to the instantaneous tremor frequency and amplitude.
Resumo:
This paper describes a structural design technique for rehabilitation robot intended for upper-limb post-stroke therapy. First, a novel approach to a rehabilitation robot is proposed and the features of the robot are explained. Second, the direct kinematics and the inverse kinematics of the proposed robot structure are derived. Finally, a mechanical design procedure is explained that achieves a compromise between the required motion range and assuring the workspace safety. The suitability of a portable escort type structure for upper limb rehabilitation of both acute and chronic stroke is discussed
Resumo:
Stroke is a leading cause of disability in particular affecting older people. Although the causes of stroke are well known and it is possible to reduce these risks, there is still a need to improve rehabilitation techniques. Early studies in the literature suggest that early intensive therapies can enhance a patient's recovery. According to physiotherapy literature, attention and motivation are key factors for motor relearning following stroke. Machine mediated therapy offers the potential to improve the outcome of stroke patients engaged on rehabilitation for upper limb motor impairment. Haptic interfaces are a particular group of robots that are attractive due to their ability to safely interact with humans. They can enhance traditional therapy tools, provide therapy "on demand" and can present accurate objective measurements of a patient's progression. Our recent studies suggest the use of tele-presence and VR-based systems can potentially motivate patients to exercise for longer periods of time. The creation of human-like trajectories is essential for retraining upper limb movements of people that have lost manipulation functions following stroke. By coupling models for human arm movement with haptic interfaces and VR technology it is possible to create a new class of robot mediated neuro rehabilitation tools. This paper provides an overview on different approaches to robot mediated therapy and describes a system based on haptics and virtual reality visualisation techniques, where particular emphasis is given to different control strategies for interaction derived from minimum jerk theory and the aid of virtual and mixed reality based exercises.
Resumo:
This paper describes the spectral design and manufacture of the narrow bandpass filters and 6-18µm broadband antireflection coatings for the 21-channel NASA EOS-AURA High Resolution Dynamics Limb Sounder (HIRDLS). A method of combining the measured spectral characteristics of each filter and antireflection coating, together with the spectral response of the other optical elements in the instrument to obtain a predicted system throughput response is presented. The design methods used to define the filter and coating spectral requirements, choice of filter materials, multilayer designs and deposition techniques are discussed.
Resumo:
A spectral performance model, designed to simulate the system spectral throughput for each of the 21 channels in the HIRDLS radiometer, is described. This model uses the measured spectral characteristics of each of the components in the optical train, appropriately corrected for their optical environment, to determine the end-to-end spectral throughput profile for each channel. This profile is then combined with the predicted thermal emission from the atmosphere, arising from the height of interest, to establish an in-band (wanted) to out-of-band (unwanted) radiance ratio. The results from the use of the model demonstrate that the instrument level radiometric requirements for the instrument will be achieved. The optical arrangement and spectral design requirements for filtering in the HIRDLS instrument are described together with a presentation of the performance achieved for the complete set of manufactured filters. Compliance of the predicted passband throughput model to the spectral positioning requi rements of the instrument is also demonstrated.