943 resultados para United States. Naval Facilities Engineering Command
Resumo:
Mode of access: Internet.
Resumo:
Schuyler O. Bland, chairman.
Resumo:
Arms of the state of Connecticut printed at head and state seal printed at lower left.
Resumo:
Bibliography: p. 271.
Resumo:
"Vital and health statistics."
Resumo:
Pt. 2 issued as U.S. Farm Credit Administration. Cooperative Research and Service Division. Miscellaneous report no. 107 (HD1491.U5A3); pt. 3 as U.S. Dept. of Agriculture. Marketing research report no. 17 (HD1751.A9183)
Resumo:
Includes bibliographies.
Resumo:
Hearings held: May 10-July 19, 1979.
Resumo:
To evaluate the long term sustainability of water withdrawals in the United States, a county level analysis of the availability of renewable water resources was conducted, and the magnitudes of human withdrawals from surface water and ground water sources and the stored water requirements during the warmest months of the year were evaluated. Estimates of growth in population and electricity generation were then used to estimate the change in withdrawals assuming that the rates of water use either remain at their current levels (the business as usual scenario) or that they exhibit improvements in efficiency at the same rate as observed over 1975 to 1995 (the improved efficiency scenario). The estimates show several areas, notably the Southwest and major metropolitan areas throughout the United States, as being likely to have significant new storage requirements with the business-as-usual scenario, under the condition of average water availability. These new requirements could be substantially eliminated under the improved efficiency scenario, thus indicating the importance of water use efficiency in meeting future requirements. The national assessment identified regions of potential water sustainability concern; these regions can be the subject of more targeted data collection and analyses in the future.
Resumo:
Introduction: The United States today has become "meeting-conscious." The complexity of conducting business has led to the need for sophisticated coordination of decision-making processes on all levels of the organization. Company meetings have played an increasingly important role in the success and future of many companies. Strategies and decisions are developed at meetings that can determine future policies of crucial importance. Executive training can mean the difference in whether the company will even survive. Large and growing companies have increased their off-premise meeting budgets annually in spite of the state of the economy. however, the rising costs of travel and lodging have made management monitor these budgets more closely than ever. Thus, the need to use every dollar efficiently has compelled companies to examine newer methods of running meetings and alternatives to the usage of typical off-premise meeting facilities. The importance of off-premise meetings in the United States economy has greatly increased due to the billions of dollars spent annually. These factors make it vital to explore the effectiveness of time and monetary expenditures. Up until the mid-1960's, company meetings were held in facilities of various design and purpose, none of which were specifically designed for the small to medium corporate meeting. Upon gathering information concerning the meetings market and the corporate meeting planner, certain individuals endeavored to change the situation. This study is designed to investigate this new concept, which will hereafter be referred to as "conference center." For the purpose of this study, the following two definitions will be used. 1. Conference center - that meeting facility primarily marketing its facilities for the small to medium-sized corporate meeting. The center is operated by specialists aware of market needs in as much detail as are those people working for the company involved. On-premise sleeping rooms are not mandatory provided such facilities are within easy access. 2. Meeting planner - that person within an organization who has primary responsibility for arranging off-premise meetings and all other related items necessary for meeting effectiveness. This person may spend anywhere from 10 to 100l of his time in this capacity. The conference center has effectively satisfied the need for specialized corporate meeting facilities. This study will show the depth of the corporate meetings market and trace the growth and development of this relatively new conference center concept. Information will also be compiled on the top centers in the country. It is hoped that by presenting this research meeting planners will become more aware of the nature and location of these centers, especially for use by the small to medium-sized company. Such exposure of the centers will hopefully increase existing demand and enable the construction of new, innovative centers.
Resumo:
Surface ozone is formed in the presence of NOx (NO + NO2) and volatile organic compounds (VOCs) and is hazardous to human health. A better understanding of these precursors is needed for developing effective policies to improve air quality. To evaluate the year-to-year changes in source contributions to total VOCs, Positive Matrix Factorization (PMF) was used to perform source apportionment using available hourly observations from June through August at a Photochemical Assessment Monitoring Station (PAMS) in Essex, MD for each year from 2007-2015. Results suggest that while gasoline and vehicle exhaust emissions have fallen, the contribution of natural gas sources to total VOCs has risen. To investigate this increasing natural gas influence, ethane measurements from PAMS sites in Essex, MD and Washington, D.C. were examined. Following a period of decline, daytime ethane concentrations have increased significantly after 2009. This trend appears to be linked with the rapid shale gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Back-trajectory analyses similarly show that ethane concentrations at these monitors were significantly greater if air parcels had passed through counties containing a high density of unconventional natural gas wells. In addition to VOC emissions, the compressors and engines involved with hydraulic fracturing operations also emit NOx and particulate matter (PM). The Community Multi-scale Air Quality (CMAQ) Model was used to simulate air quality for the Eastern U.S. in 2020, including emissions from shale gas operations in the Appalachian Basin. Predicted concentrations of ozone and PM show the largest decreases when these natural gas resources are hypothetically used to convert coal-fired power plants, despite the increased emissions from hydraulic fracturing operations expanded into all possible shale regions in the Appalachian Basin. While not as clean as burning natural gas, emissions of NOx from coal-fired power plants can be reduced by utilizing post-combustion controls. However, even though capital investment has already been made, these controls are not always operated at optimal rates. CMAQ simulations for the Eastern U.S. in 2018 show ozone concentrations decrease by ~5 ppb when controls on coal-fired power plants limit NOx emissions to historically best rates.
Resumo:
Background: Physical inactivity is a major risk factor for cardiovascular disease and diabetes among South Asians (SAs) - Bangladeshi, Bhutanese, Indian, Maldivian, Nepali, Pakistani, and Sri Lankan. Methods: An online survey was used to determine the feasibility of examining physical activity (PA) levels of SAs living in the US. The Social Ecological Model was the theoretical basis for identifying individual-level, social environmental, and physical environmental factors that impact PA. Results: Ethnicity, intention, self-efficacy, and perceived health benefits of PA were significantly associated with being physically active. Facilitators to PA included achieving improved health; while barriers were lack of time to exercise, unfamiliarity with PA, and nonexistent gender-specific PA facilities. Conclusions: This study showed that online surveys can be a promising tool for data collection among SAs. Health promotion programs should include education on the benefits of PA, and provide culturally sensitive facilities that support PA, especially for SA women.
Resumo:
The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.
Resumo:
United States federal agencies assess flood risk using Bulletin 17B procedures which assume annual maximum flood series are stationary. This represents a significant limitation of current flood frequency models as the flood distribution is thereby assumed to be unaffected by trends or periodicity of atmospheric/climatic variables and/or anthropogenic activities. The validity of this assumption is at the core of this thesis, which aims to improve understanding of the forms and potential causes of non-stationarity in flood series for moderately impaired watersheds in the Upper Midwest and Northeastern US. Prior studies investigated non-stationarity in flood series for unimpaired watersheds; however, as the majority of streams are located in areas of increasing human activity, relative and coupled impacts of natural and anthropogenic factors need to be considered such that non-stationary flood frequency models can be developed for flood risk forecasting over relevant planning horizons for large scale water resources planning and management.
Resumo:
Finding the optimum location for placing a dam on a river is usually a complicated process which generally forces thousands of people to flee their homes because they will be inundated during the filling of the dam. Dams could also attract people living in the surrounding area after their construction. The goal of this research is to check for dam attractiveness for people by comparing growth rates of population density in surrounding areas after dam construction to those associated with the period antecedent to the dam construction. To this aim, 1859 dams across the United States of America and high-resolution population distribution from 1790 to 2010 are examined. By grouping dams as a function of their main purpose, water supply dams are found to be, as expected, the most attractive dams for people, with the biggest growth in population density. Irrigation dams are next, followed by hydroelectricity, flood control, Navigation, and finally Recreation dams. Fishery dams and dams for other uses suffered a decrease in population in the years after their construction. The regions with the greatest population growth were found approximately 40-45 km from the dam and at distances greater than 90 km, whereas the regions with the greatest population decline or only a modest gain were located within 10-15 km of the dam.