925 resultados para Ultrasonic Vocalizations (USVs)
Resumo:
The purpose of this pilot study was to survey dentists in the St. Louis area to assess their subjective opinion of commonly used dental handpieces as well as history of noise exposure and use of hearing protection. Selected handpieces were then chosen to measure their output levels and determine if emissions are hazardous to the auditory system.
Resumo:
Laboratory measurements of the attenuation and velocity dispersion of compressional and shear waves at appropriate frequencies, pressures, and temperatures can aid interpretation of seismic and well-log surveys as well as indicate absorption mechanisms in rocks. Construction and calibration of resonant-bar equipment was used to measure velocities and attenuations of standing shear and extensional waves in copper-jacketed right cylinders of rocks (30 cm in length, 2.54 cm in diameter) in the sonic frequency range and at differential pressures up to 65 MPa. We also measured ultrasonic velocities and attenuations of compressional and shear waves in 50-mm-diameter samples of the rocks at identical pressures. Extensional-mode velocities determined from the resonant bar are systematically too low, yielding unreliable Poisson's ratios. Poisson's ratios determined from the ultrasonic data are frequency corrected and used to calculate the sonic-frequency compressional-wave velocities and attenuations from the shear- and extensional-mode data. We calculate the bulk-modulus loss. The accuracies of attenuation data (expressed as 1000/Q, where Q is the quality factor) are +/- 1 for compressional and shear waves at ultrasonic frequency, +/- 1 for shear waves, and +/- 3 for compressional waves at sonic frequency. Example sonic-frequency data show that the energy absorption in a limestone is small (Q(P) greater than 200 and stress independent) and is primarily due to poroelasticity, whereas that in the two sandstones is variable in magnitude (Q(P) ranges from less than 50 to greater than 300, at reservoir pressures) and arises from a combination of poroelasticity and viscoelasticity. A graph of compressional-wave attenuation versus compressional-wave velocity at reservoir pressures differentiates high-permeability (> 100 mD, 9.87 X 10(-14) m(2)) brine-saturated sandstones from low-permeability (< 100 mD, 9.87 X 10 (14) m(2)) sandstones and shales.
Resumo:
We discuss a novel approach that would lead to the development of an ultrasonic optical force-feedback measurement microphone.
Resumo:
A highly efficient process for oxidative degradation of 1,3-dialkylimidazolium ionic liquids in hydrogen peroxide/acetic acid aqueous medium assisted by ultrasonic chemical irradiation is, for the first time, described. It is shown that more than 93% of the 1,3-dialkylimidazolium cation with the corresponding Cl-, Br-, BF4- and PF6- counter-anions at a concentration of 2.5 mM can be degraded at 50 degrees C within 12 h while at 72 h the conversions approach 99%. A tentative mechanism for the degradation of these ILs is for the first time proposed through a detailed kinetic analysis of several characteristic transients and/or immediate products, which are identified during the ILs degradation using GC-MS. The results clearly indicate that three hydrogen atoms in the imidazolium ring are the first sites preferably oxidized, followed by cleavage of the alkyl groups attached to the N atoms from the ring. The nature of the alkyl chain length on the imidazolium ring and the type of counter anion do not seem to affect the degradation process. Further, selective fragmentations of C-N bonds of the imidazolium or derived ring lead to ring opening, forming degraded intermediates. It is also shown that acetoxyacetic acid and biurea are the final kinetically stable degraded products from the ILs under the degradation conditions.
Resumo:
Measuring ultrasonic communication provides us with a way to study parental influence on animals. In this study I measured the ultrasonic communication between mouse pups and two maternal females, one of which who had given birth to the pups and the other had raised them. I found that there was no significant difference between the amount of noise expressed by pups in response to each the biological mother and foster mother test groups. Mouse pups call to maternal females regardless of genetic relatedness. Communication in mice may be a more complicated model because of their communal nature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a cell to measure dynamic viscosity of liquids using ultrasonic wave mode conversion from longitudinal to shear wave. The strategy used to obtain the viscosity is based on the measurement of the complex reflection coefficient of shear waves at a solid-liquid interface. Viscosity measurements of automotive oils (SAE90 and SAE140) were obtained in the frequency range from 1 to 10 MHz. These results are compared with the Maxwell model with two relaxation times, showing the dependency of viscosity with frequency. Several parameters affecting viscosity measurements, including the solid material properties, liquid viscosity, and operating frequency are discussed.
Resumo:
This work presents recent improvements in a density measurement cell with a double-element transducer that can eliminate diffraction effects. A new mechanical design combined with the use of more appropriate materials has resulted in better parallelism between interfaces, more robust assembly, and chemical resistance. A novel method of signal processing, named energy method, is introduced to obtain the reflection coefficient, reducing sensitivity to noise and improving accuracy. The measurement cell operation is verified both theoretically, using an acoustic wave propagation model, and experimentally, using homogeneous liquids with different densities. The accuracy in the density measurement is 0.2% when compared with the measurements made with a pycnometer.
Resumo:
This paper presents a theoretical analysis of a density measurement cell using an unidimensional model composed by acoustic and electroacoustic transmission lines in order to simulate non-ideal effects. The model is implemented using matrix operations, and is used to design the cell considering its geometry, materials used in sensor assembly, range of liquid sample properties and signal analysis techniques. The sensor performance in non-ideal conditions is studied, considering the thicknesses of adhesive and metallization layers, and the effect of residue of liquid sample which can impregnate on the sample chamber surfaces. These layers are taken into account in the model, and their effects are compensated to reduce the error on density measurement. The results show the contribution of residue layer thickness to density error and its behavior when two signal analysis methods are used. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This work describes the use of a large-aperture PVDF receiver in the measurement of liquid density and composite material elastic constants. The density measurement of several liquids is obtained with accuracy of 0.2% using a conventional NDE emitter transducer and a 70-mm-diameter, 52-mu m P(VDF-TrFE) membrane with gold electrodes. The determination of the elastic constants is based on the phase velocity measurement. Diffraction can lead to errors around 1% in velocity measurement when using alternatively the conventional pair of ultrasonic transducers (1-MHz frequency and 19-mm-diameter) operating in through-transmission mode, separated by a distance of 100 mm. This effect is negligible when using a pair of 10-MHz, 19-mm-diameter transducers. Nevertheless, the dispersion at 10 MHz can result in errors of about 0.5%, when measuring the velocity in composite materials. The use of an 80-mm diameter, 52-mu m-thick PVDF membrane receiver practically eliminates the diffraction effects in phase velocity measurement. The elastic constants of a carbon fiber reinforced polymer were determined and compared with the values obtained by a tensile test. (C) 2009 Elsevier B. V. All rights reserved.