936 resultados para Ultra-trace analysis
Resumo:
Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties. In this study, a rapid and validated ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTof-MS) method was developed to investigate the metabolism of scoparone in rat for the first time. The new method reduced the sample handling and analytical time by three- to six-fold, and the detection limit by five- to 1000-fold, compared to published methods. Far more metabolites were detected and identified compared to published data, which were preliminarily identified as scopoletin, isoscopoletin, isofraxidin, and fraxidin, respectively, when subjected to tandem mass spectrometry analyses. It is found that the metabolic trajectory of scoparone in rat focused on phase I metabolism which is obviously different from published results, and revealed a wide range of pharmacological properties of scoparone partly attributed to the bioactivities of its metabolites.
Resumo:
Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.
Resumo:
Quantitative determination of modification of primary sediment features, by the activity of organisms (i.e., bioturbation) is essential in geosciences. Some methods proposed since the 1960s are mainly based on visual or subjective determinations. The first semiquantitative evaluations of the Bioturbation Index, Ichnofabric Index, or the amount of bioturbation were attempted, in the best cases using a series of flashcards designed in different situations. Recently, more effective methods involve the use of analytical and computational methods such as X-rays, magnetic resonance imaging or computed tomography; these methods are complex and often expensive. This paper presents a compilation of different methods, using Adobe® Photoshop® software CS6, for digital estimation that are a part of the IDIAP (Ichnological Digital Analysis Images Package), which is an inexpensive alternative to recently proposed methods, easy to use, and especially recommended for core samples. The different methods — “Similar Pixel Selection Method (SPSM)”, “Magic Wand Method (MWM)” and the “Color Range Selection Method (CRSM)” — entail advantages and disadvantages depending on the sediment (e.g., composition, color, texture, porosity, etc.) and ichnological features (size of traces, infilling material, burrow wall, etc.). The IDIAP provides an estimation of the amount of trace fossils produced by a particular ichnotaxon, by a whole ichnocoenosis or even for a complete ichnofabric. We recommend the application of the complete IDIAP to a given case study, followed by selection of the most appropriate method. The IDIAP was applied to core material recovered from the IODP Expedition 339, enabling us, for the first time, to arrive at a quantitative estimation of the discrete trace fossil assemblage in core samples.
Resumo:
Process compliance measurement is getting increasing attention in companies due to stricter legal requirements and market pressure for operational excellence. In order to judge on compliance of the business processing, the degree of behavioural deviation of a case, i.e., an observed execution sequence, is quantified with respect to a process model (referred to as fitness, or recall). Recently, different compliance measures have been proposed. Still, nearly all of them are grounded on state-based techniques and the trace equivalence criterion, in particular. As a consequence, these approaches have to deal with the state explosion problem. In this paper, we argue that a behavioural abstraction may be leveraged to measure the compliance of a process log – a collection of cases. To this end, we utilise causal behavioural profiles that capture the behavioural characteristics of process models and cases, and can be computed efficiently. We propose different compliance measures based on these profiles, discuss the impact of noise in process logs on our measures, and show how diagnostic information on non-compliance is derived. As a validation, we report on findings of applying our approach in a case study with an international service provider.
Resumo:
Background We examined pituitary volume before the onset of psychosis in subjects who were at ultra-high risk (UHR) for developing psychosis. Methods Pituitary volume was measured on 1.5-mm, coronal, 1.5-T magnetic resonance images in 94 UHR subjects recruited from admissions to the Personal Assessment and Crisis Evaluation Clinic in Melbourne, Australia and in 49 healthy control subjects. The UHR subjects were scanned at baseline and were followed clinically for a minimum of 1 year to detect transition to psychosis. Results Within the UHR group, a larger baseline pituitary volume was a significant predictor of future transition to psychosis. The UHR subjects who later went on to develop psychosis (UHR-P, n = 31) had a significantly larger (+12%; p = .001) baseline pituitary volume compared with UHR subjects who did not go on to develop psychosis (UHR-NP, n = 63). The survival analysis conducted by Cox regression showed that the risk of developing psychosis during the follow-up increased by 20% for every 10% increase in baseline pituitary volume (p = .002). Baseline pituitary volume of the UHR-NP subjects was smaller not only compared with UHR-P (as described above) but also compared with control subjects (−6%; p = .032). Conclusions The phase before the onset of psychosis is associated with a larger pituitary volume, suggesting activation of the HPA axis.
Resumo:
In vegetated environments, reliable obstacle detection remains a challenge for state-of-the-art methods, which are usually based on geometrical representations of the environment built from LIDAR and/or visual data. In many cases, in practice field robots could safely traverse through vegetation, thereby avoiding costly detours. However, it is often mistakenly interpreted as an obstacle. Classifying vegetation is insufficient since there might be an obstacle hidden behind or within it. Some Ultra-wide band (UWB) radars can penetrate through vegetation to help distinguish actual obstacles from obstacle-free vegetation. However, these sensors provide noisy and low-accuracy data. Therefore, in this work we address the problem of reliable traversability estimation in vegetation by augmenting LIDAR-based traversability mapping with UWB radar data. A sensor model is learned from experimental data using a support vector machine to convert the radar data into occupancy probabilities. These are then fused with LIDAR-based traversability data. The resulting augmented traversability maps capture the fine resolution of LIDAR-based maps but clear safely traversable foliage from being interpreted as obstacle. We validate the approach experimentally using sensors mounted on two different mobile robots, navigating in two different environments.
Resumo:
Particle analysis methodology is presented, together with the morphology of the wear debris formed during rolling contact fatigue. Wear particles are characterised by their surface topography and in terms of wear mechanism. Rail-wheel materials are subjected to severe plastic deformation as the contact loading progresses, which contributes to a mechanism of major damage in head-hardened rail steel. Most of the current methodologies involve sectioning of the rail-wheel discs to trace material damage phenomena such as crack propagation and plastic strain accumulation. This paper proposes methodology to analyse the development of the plastically deformed layer by sectioning wear particles using the focussed ion beam (FIB) milling method. Moreover, it highlights the processes of oxidation and rail surface delamination during unlubricated rolling contact fatigue.
Resumo:
A combined data matrix consisting of high performance liquid chromatography–diode array detector (HPLC–DAD) and inductively coupled plasma-mass spectrometry (ICP-MS) measurements of samples from the plant roots of the Cortex moutan (CM), produced much better classification and prediction results in comparison with those obtained from either of the individual data sets. The HPLC peaks (organic components) of the CM samples, and the ICP-MS measurements (trace metal elements) were investigated with the use of principal component analysis (PCA) and the linear discriminant analysis (LDA) methods of data analysis; essentially, qualitative results suggested that discrimination of the CM samples from three different provinces was possible with the combined matrix producing best results. Another three methods, K-nearest neighbor (KNN), back-propagation artificial neural network (BP-ANN) and least squares support vector machines (LS-SVM) were applied for the classification and prediction of the samples. Again, the combined data matrix analyzed by the KNN method produced best results (100% correct; prediction set data). Additionally, multiple linear regression (MLR) was utilized to explore any relationship between the organic constituents and the metal elements of the CM samples; the extracted linear regression equations showed that the essential metals as well as some metallic pollutants were related to the organic compounds on the basis of their concentrations
Resumo:
An efficient method for the analysis of hydroquinone at trace levels in water samples has been developed in the form of a fluorescent probe based on graphene quantum dots (GQDs). The analytical variable, fluorescence quenching, was generated from the formation of benzoquinone intermediates, which formed during the catalytic oxidation of hydroquinone by horseradish peroxidase (HRP). In general, the reaction mechanism involved hydroquinone, as an electron acceptor, which affected the surface state of GQDs via an electron transfer effect. The water-soluble GQDs were directly prepared by the pyrolysis of citric acid and with the use of the mentioned hybrid enzyme system, the detection limit for hydroquinone was as low as 8.4 × 10−8 M. Furthermore, this analysis was almost unaffected by other phenol and quinine compounds, such as phenol, resorcinol and other quinines, and therefore, the developed GQD method produced satisfactory results for the analysis of hydroquinone in several different lake water samples.
Resumo:
Objective: The aim of this study was to explore whether there is a relationship between the degree of MR-defined inflammation using ultra small super-paramagnetic iron oxide (USPIO) particles, and biomechanical stress using finite element analysis (FEA) techniques, in carotid atheromatous plaques. Methods and Results: 18 patients with angiographically proven carotid stenoses underwent multi-sequence MR imaging before and 36 h after USPIO infusion. T2 * weighted images were manually segmented into quadrants and the signal change in each quadrant normalised to adjacent muscle was calculated after USPIO administration. Plaque geometry was obtained from the rest of the multi-sequence dataset and used within a FEA model to predict maximal stress concentration within each slice. Subsequently, a new statistical model was developed to explicitly investigate the form of the relationship between biomechanical stress and signal change. The Spearman's rank correlation coefficient for USPIO enhanced signal change and maximal biomechanical stress was -0.60 (p = 0.009). Conclusions: There is an association between biomechanical stress and USPIO enhanced MR-defined inflammation within carotid atheroma, both known risk factors for plaque vulnerability. This underlines the complex interaction between physiological processes and biomechanical mechanisms in the development of carotid atheroma. However, this is preliminary data that will need validation in a larger cohort of patients.
Resumo:
The present challenge in drug discovery is to synthesize new compounds efficiently in minimal time. The trend is towards carefully designed and well-characterized compound libraries because fast and effective synthesis methods easily produce thousands of new compounds. The need for rapid and reliable analysis methods is increased at the same time. Quality assessment, including the identification and purity tests, is highly important since false (negative or positive) results, for instance in tests of biological activity or determination of early-ADME parameters in vitro (the pharmacokinetic study of drug absorption, distribution, metabolism, and excretion), must be avoided. This thesis summarizes the principles of classical planar chromatographic separation combined with ultraviolet (UV) and mass spectrometric (MS) detection, and introduces powerful, rapid, easy, low-cost, and alternative tools and techniques for qualitative and quantitative analysis of small drug or drug-like molecules. High performance thin-layer chromatography (HPTLC) was introduced and evaluated for fast semi-quantitative assessment of the purity of synthesis target compounds. HPTLC methods were compared with the liquid chromatography (LC) methods. Electrospray ionization mass spectrometry (ESI MS) and atmospheric pressure matrix-assisted laser desorption/ionization MS (AP MALDI MS) were used to identify and confirm the product zones on the plate. AP MALDI MS was rapid, and easy to carry out directly on the plate without scraping. The PLC method was used to isolate target compounds from crude synthesized products and purify them for bioactivity and preliminary ADME tests. Ultra-thin-layer chromatography (UTLC) with AP MALDI MS and desorption electrospray ionization mass spectrometry (DESI MS) was introduced and studied for the first time. Because of the thinner adsorbent layer, the monolithic UTLC plate provided 10 100 times better sensitivity in MALDI analysis than did HPTLC plates. The limits of detection (LODs) down to low picomole range were demonstrated for UTLC AP MALDI and UTLC DESI MS. In a comparison of AP and vacuum MALDI MS detection for UTLC plates, desorption from the irregular surface of the plates with the combination of an external AP MALDI ion source and an ion trap instrument provided clearly less variation in mass accuracy than the vacuum MALDI time-of-flight (TOF) instrument. The performance of the two-dimensional (2D) UTLC separation with AP MALDI MS method was studied for the first time. The influence of the urine matrix on the separation and the repeatability was evaluated with benzodiazepines as model substances in human urine. The applicability of 2D UTLC AP MALDI MS was demonstrated in the detection of metabolites in an authentic urine sample.
Resumo:
This study examined whether element: Ca ratios within the otoliths of juvenile brown trout could provide accurate trace element signatures for specific natal tributaries, and attempted to match these to trace element natal signatures found within the otoliths of adult trout caught in the main stem rivers of the same catchment. The trace element signatures of juvenile trout otoliths were analysed from a sample of eight tributaries representing the main sub-catchments of the Motueka River catchment, New Zealand. Trace element signatures were determined using laser ablation inductively coupled plasma mass spectrometry, and differentiated using linear discriminant function analysis with an overall cross-validated classification success of 96.8%. Temporal stability in element: Ca ratios was investigated by repeat collections of juvenile fish over two years. Natal signatures from 11 of 23 adult trout sampled from the catchment main stems were matched to one of the eight tributary signatures showing recruitment sources to be spread relatively evenly throughout the catchment. This study demonstrates the potential of using otolith trace element analysis to determine the natal origins of freshwater fish within a catchment.
Resumo:
Comprehensive two-dimensional gas chromatography (GC×GC) offers enhanced separation efficiency, reliability in qualitative and quantitative analysis, capability to detect low quantities, and information on the whole sample and its components. These features are essential in the analysis of complex samples, in which the number of compounds may be large or the analytes of interest are present at trace level. This study involved the development of instrumentation, data analysis programs and methodologies for GC×GC and their application in studies on qualitative and quantitative aspects of GC×GC analysis. Environmental samples were used as model samples. Instrumental development comprised the construction of three versions of a semi-rotating cryogenic modulator in which modulation was based on two-step cryogenic trapping with continuously flowing carbon dioxide as coolant. Two-step trapping was achieved by rotating the nozzle spraying the carbon dioxide with a motor. The fastest rotation and highest modulation frequency were achieved with a permanent magnetic motor, and modulation was most accurate when the motor was controlled with a microcontroller containing a quartz crystal. Heated wire resistors were unnecessary for the desorption step when liquid carbon dioxide was used as coolant. With use of the modulators developed in this study, the narrowest peaks were 75 ms at base. Three data analysis programs were developed allowing basic, comparison and identification operations. Basic operations enabled the visualisation of two-dimensional plots and the determination of retention times, peak heights and volumes. The overlaying feature in the comparison program allowed easy comparison of 2D plots. An automated identification procedure based on mass spectra and retention parameters allowed the qualitative analysis of data obtained by GC×GC and time-of-flight mass spectrometry. In the methodological development, sample preparation (extraction and clean-up) and GC×GC methods were developed for the analysis of atmospheric aerosol and sediment samples. Dynamic sonication assisted extraction was well suited for atmospheric aerosols collected on a filter. A clean-up procedure utilising normal phase liquid chromatography with ultra violet detection worked well in the removal of aliphatic hydrocarbons from a sediment extract. GC×GC with flame ionisation detection or quadrupole mass spectrometry provided good reliability in the qualitative analysis of target analytes. However, GC×GC with time-of-flight mass spectrometry was needed in the analysis of unknowns. The automated identification procedure that was developed was efficient in the analysis of large data files, but manual search and analyst knowledge are invaluable as well. Quantitative analysis was examined in terms of calibration procedures and the effect of matrix compounds on GC×GC separation. In addition to calibration in GC×GC with summed peak areas or peak volumes, simplified area calibration based on normal GC signal can be used to quantify compounds in samples analysed by GC×GC so long as certain qualitative and quantitative prerequisites are met. In a study of the effect of matrix compounds on GC×GC separation, it was shown that quality of the separation of PAHs is not significantly disturbed by the amount of matrix and quantitativeness suffers only slightly in the presence of matrix and when the amount of target compounds is low. The benefits of GC×GC in the analysis of complex samples easily overcome some minor drawbacks of the technique. The developed instrumentation and methodologies performed well for environmental samples, but they could also be applied for other complex samples.
Resumo:
Transport plays an important role in the distribution of long-lived gases such as ozone and water vapour in the atmosphere. Understanding of observed variability in these gases as well as prediction of the future changes depends therefore on our knowledge of the relevant atmospheric dynamics. This dissertation studies certain dynamical processes in the stratosphere and upper troposphere which influence the distribution of ozone and water vapour in the atmosphere. The planetary waves that originate in the troposphere drive the stratospheric circulation. They influence both the meridional transport of substances as well as parameters of the polar vortices. In turn, temperatures inside the polar vortices influence abundance of the Polar Stratospheric Clouds (PSC) and therefore the chemical ozone destruction. Wave forcing of the stratospheric circulation is not uniform during winter. The November-December averaged stratospheric eddy heat flux shows a significant anticorrelation with the January-February averaged eddy heat flux in the midlatitude stratosphere and troposphere. These intraseasonal variations are attributable to the internal stratospheric vacillations. In the period 1979-2002, the wave forcing exhibited a negative trend which was confined to the second half of winter only. In the period 1958-2002, area, strength and longevity of the Arctic polar vortices do not exhibit significant long-term changes while the area with temperatures lower than the threshold temperature for PSC formation shows statistically significant increase. However, the Arctic vortex parameters show significant decadal changes which are mirrored in the ozone variability. Monthly ozone tendencies in the Northern Hemisphere show significant correlations (|r|=0.7) with proxies of the stratospheric circulation. In the Antarctic, the springtime vortex in the lower stratosphere shows statistically significant trends in temperature, longevity and strength (but not in area) in the period 1979-2001. Analysis of the ozone and water vapour vertical distributions in the Arctic UTLS shows that layering below and above the tropopause is often associated with poleward Rossby wave-breaking. These observations together with calculations of cross-tropopause fluxes emphasize the importance of poleward Rossby wave breaking for the stratosphere-troposphere exchange in the Arctic.