944 resultados para Ubiquitin promoter
Resumo:
Mitochondrial transcription termination factor 1, MTERF1, has been reported to couple rRNA gene transcription initiation with termination and is therefore thought to be a key regulator of mammalian mitochondrial ribosome biogenesis. The prevailing model is based on a series of observations published over the last two decades, but no in vivo evidence exists to show that MTERF1 regulates transcription of the heavy-strand region of mtDNA containing the rRNA genes. Here, we demonstrate that knockout of Mterf1 in mice has no effect on mitochondrial rRNA levels or mitochondrial translation. Instead, loss of Mterf1 influences transcription initiation at the light-strand promoter, resulting in a decrease of de novo transcription manifested as reduced 7S RNA levels. Based on these observations, we suggest that MTERF1 does not regulate heavy-strand transcription, but rather acts to block transcription on the opposite strand of mtDNA to prevent transcription interference at the light-strand promoter.
Resumo:
Xie and colleagues previously isolated the Arabidopsis COI1 gene that is required for response to jasmonates (JAs), which regulate root growth, pollen fertility, wound healing, and defense against insects and pathogens. In this study, we demonstrate that COI1 associates physically with AtCUL1, AtRbx1, and either of the Arabidopsis Skp1-like proteins ASK1 or ASK2 to assemble ubiquitin-ligase complexes, which we have designated SCF(COI1). COI1(E22A), a single amino acid substitution in the F-box motif of COI1, abolishes the formation of the SCF(COI1) complexes and results in loss of the JA response. AtRbx1 double-stranded RNA-mediated genetic interference reduces AtRbx1 expression and affects JA-inducible gene expression. Furthermore, we show that the AtCUL1 component of SCF(COI1) complexes is modified in planta, where mutations in AXR1 decrease the abundance of the modified AtCUL1 of SCF(COI1) and lead to a reduction in JA response. Finally, we demonstrate that the axr1 and coi1 mutations display a synergistic genetic interaction in the double mutant. These results suggest that the COI1-mediated JA response is dependent on the SCF(COI1) complexes in Arabidopsis and that the AXR1-dependent modification of the AtCUL1 subunit of SCF(COI1) complexes is important for JA signaling.
Resumo:
The ubiquitin proteasome system (UPS) plays a central role in cellular protein homeostasis through the targeted destruction of damaged/misfolded proteins and regulatory proteins that control critical cellular functions. The UPS comprises a sequential series of enzymatic activities to covalently attach ubiquitin to proteins to target them for degradation through the proteasome. Aberrancies within this system have been associated with transformation and tumourigenesis and thus, the UPS represents an attractive target for the development of anti-cancer therapies. The use of the first-in-class proteasome inhibitor, bortezomib, in the treatment of Plasma Cell Myeloma and Mantle Cell Lymphoma has validated the UPS as a therapeutic target. Following on its success, efforts are focused on the development of second-generation proteasome inhibitors and small molecule inhibitors of other components of the UPS. This review will provide an overview of the UPS and discuss current and novel therapies targeting the UPS.
Resumo:
Cytosolic phospholipase A2 (cPLA2) releases arachidonic acid from membrane phospholipids and is believed to be the rate-limiting enzyme in the arachidonic acid pathway. We report herein the isolation of a 3 kb fragment of rodent genomic DNA containing part of the first intron, the first exon and 5'-flanking sequence. The start site of transcription was mapped by 5'-rapid amplification of cDNA ends and corroborated by ribonuclease protection assay. The gene has a TATAless promoter with no classical Sp1 binding sites or initiator element. A microsatellite series of CA repeats was noted in the 5'-flanking region of both the rodent and human promoters. Deletion constructs have been analysed for luciferase activity and confirmed promoter activity.
Resumo:
Growth-promoting agents are continually misused for increasing animal growth and fraudulent gain in the meat industry, yet detection rates from conventional targeted testing for drug residues do not reflect this. This is because testing currently relies on direct detection of drugs or related metabolites and administrators of such compounds can take adaptive measures to avoid detection through the use of endogenous or unknown drugs, and low dose or combined mixtures. New detection methods are needed which focus on the screening of biological responses of an animal to such growth-promoting agents as it has been demonstrated that genomic, proteomic and metabolomics profiles are altered by xenobiotic intake. Therefore, an untargeted proteomics approach using comparative two-dimensional gel electrophoresis (2DE) was carried out to identify putative proteins altered in plasma after treatment with oestradiol, dexamethasone or prednisolone. Twenty-four male cattle were randomly assigned to four groups (n = 6) for experimental treatment over 40 days, namely a control group of non-treated cattle, and three groups administered 17β-oestradiol-3-benzoate (0.01 mg/kg, intramuscular), dexamethasone sodium phosphate (0.7 mg/day, per os) or prednisolone acetate (15 mg/day, per os), respectively. Plasma collected from each animal at day 25 post study initiation was subjected to proteomic analysis by 2DE for comparison of protein expression between treated and untreated animals. Analysis of acquired gel images revealed 22 plasma proteins which differed in expression by more than 50 % (p < 0.05) in treated animals compared to untreated animals. Proteins of interest underwent identification by LC–MS/MS analysis and were found to have associated roles in transport, blood coagulation, immune response and metabolism pathways. In this way, seven proteins are highlighted as novel biomarker candidates including transthyretin which is shown to be significantly increased in all treatment groups compared to control animals and potentially may find use as global markers of suspect anabolic practice.
Resumo:
The sensing of foreign agents by the innate and adaptive immune system triggers complex signal transduction cascades that culminate in expression of gene patterns that facilitate host protection from the invading agent. Post-translational modification of intracellular signaling proteins in these pathways is a key regulatory mechanism with ubiquitination being one of the important processes that controls levels and activities of signaling molecules. E3 ubiquitin ligases are the determining enzymes in dictating the ubiquitination status of individual proteins. Among these hundred E3 ubiquitin ligases are a family of Pellino proteins that are emerging to be important players in immunity and beyond. Herein, we review the roles of the Pellino E3 ubiquitin ligases in innate and adaptive immunity. We discuss their early discovery and characterization and how this has been aided by the highly conserved nature of innate immune signaling across evolution. We describe the molecular roles of Pellino proteins in immune signaling with particular emphasis on their involvement in pathogen recognition receptor (PRR) signaling. The growing appreciation of the importance of Pellino proteins in a wide range of immune-mediated diseases are also evaluated.
Resumo:
Diet-induced obesity can induce low-level inflammation and insulin resistance. Interleukin-1β (IL-1β) is one of the key proinflammatory cytokines that contributes to the generation of insulin resistance and diabetes, but the mechanisms that regulate obesity-driven inflammation are ill defined. Here we found reduced expression of the E3 ubiquitin ligase Pellino3 in human abdominal adipose tissue from obese subjects and in adipose tissue of mice fed a high-fat diet and showing signs of insulin resistance. Pellino3-deficient mice demonstrated exacerbated high-fat-diet-induced inflammation, IL-1β expression, and insulin resistance. Mechanistically, Pellino3 negatively regulated TNF receptor associated 6 (TRAF6)-mediated ubiquitination and stabilization of hypoxia-inducible factor 1α (HIF1α), resulting in reduced HIF1α-induced expression of IL-1β. Our studies identify a regulatory mechanism controlling diet-induced insulin resistance by highlighting a critical role for Pellino3 in regulating IL-1β expression with implications for diseases like type 2 diabetes.
Resumo:
Pellino proteins were initially characterized as a family of E3 ubiquitin ligases that can catalyse the ubiquitylation of interleukin-1 receptor-associated kinase 1 (IRAK1) and regulate innate immune signalling pathways. More recently, physiological and molecular roles for members of the Pellino family have been described in the regulation of innate and adaptive immune responses by ubiquitylation. This Review describes the emerging roles of Pellino proteins in innate and adaptive immunity and discusses the mechanistic basis of these functions.
Resumo:
PURPOSE: IGFBP7 belongs to a family of insulin-like growth factor-1 regulatory binding proteins. IGFBP7 hypermethylation is associated with its down-regulation in various carcinomas. In prostate cancer IGFBP7 down-regulation has been widely reported but to our knowledge the mechanisms behind this event are unknown. We performed a denaturing high performance liquid chromatography screening and validation strategy to profile the methylation status of IGFBP7 in prostate cancer.
MATERIALS AND METHODS: We combined denaturing high performance liquid chromatography and bisulfite sequencing to examine IGFBP7 methylation in a panel of prostate cancer cell lines. Quantitative methylation specific polymerase chain reaction was used to determine methylation levels in prostate tissue specimens of primary prostate cancer, histologically benign prostate adjacent to tumor, high grade prostatic intraepithelial neoplasia and benign prostatic hyperplasia. IGFBP7 gene expression was measured by quantitative methylation specific polymerase chain reaction in cell lines and tissue specimens.
RESULTS: IGFBP7 was methylated in the 4 prostate cancer cell lines DU145, LNCaP, PC-3 and 22RV1. Quantitative methylation specific polymerase chain reaction analysis revealed that promoter methylation was associated with decreased IGFBP7 expression. Quantitative methylation specific polymerase chain reaction showed that IGFBP7 methylation was more frequently detected in prostate cancer (60% (31/52)) and high grade prostatic intraepithelial neoplasia (40% (6/15)) samples compared to histologically benign prostate adjacent to tumor (10%) and benign prostatic hyperplasia (0%) samples.
CONCLUSIONS: To our knowledge this is the first report of aberrant IGFBP7 promoter hypermethylation and concurrent IGFBP7 gene silencing in prostate cancer cell lines. Results demonstrate that CpG methylation of IGFBP7 may represent a novel biomarker of prostate cancer and pre-invasive neoplasms. Thus, future examination of IGFBP7 methylation and expression in a larger patient cohort, including bodily fluids, is justified to further evaluate its role in a diagnostic and prognostic setting.
Resumo:
BACKGROUND: Aberrant DNA methylation has been implicated as a key survival mechanism in cancer, whereby promoter hypermethylation silences genes essential for many cellular processes including apoptosis. Limited data is available on the methylation profile of apoptotic genes in prostate cancer (CaP). The aim of this study was to profile methylation of apoptotic-related genes in CaP using denaturing high performance liquid chromatography (DHPLC).
METHODS: Based on an in silico selection process, 13 genes were screened for methylation in CaP cell lines using DHPLC. Quantitative methylation specific PCR was employed to determine methylation levels in prostate tissue specimens (n = 135), representing tumor, histologically benign prostate, high-grade prostatic intraepithelial neoplasia and benign prostatic hyperplasia. Gene expression was measured by QRT-PCR in cell lines and tissue specimens.
RESULTS: The promoters of BIK, BNIP3, cFLIP, TMS1, DCR1, DCR2, and CDKN2A appeared fully or partially methylated in a number of malignant cell lines. This is the first report of aberrant methylation of BIK, BNIP3, and cFLIP in CaP. Quantitative methylation analysis in prostate tissues identified 5 genes (BNIP3, CDKN2A, DCR1, DCR2 and TMS1) which were frequently methylated in tumors but were unmethylated in 100% of benign tissues. Furthermore, 69% of tumors were methylated in at least one of the five-gene panel. In the case of all genes, except BNIP3, promoter hypermethylation was associated with concurrent downregulation of gene expression.
CONCLUSION: Future examination of this "CaP apoptotic methylation signature" in a larger cohort of patients is justified to further evaluate its value as a diagnostic and prognostic marker.
Resumo:
BACKGROUND: Transforming growth factor-beta (TGF-beta) is a potent growth inhibitor in a wide range of cell types. A transducer of TGF-beta signaling known as Mothers against decapentaplegic homologue 4 (Smad4) is a known tumor suppressor found on chromosome 18q21.1 and is typically inactivated by deletion or mutation in pancreatic and colorectal cancers. The purpose of the article is to investigate Smad4 expression, gene copy number and methylation status in advanced cases of prostate cancer.
METHODS: We have employed Methylation Specific PCR (MSP) to identify methylation sites within the Smad4 promoter and combined this with quantitative real-time PCR to look for correlates between methylation status and Smad4 expression and to examine androgen receptor (AR) expression. Bacterial artificial chromosome-comparative genomic hybridization (BAC-CGH) has been used to look for genomic amplifications and deletions which may also contribute to expression changes.
RESULTS: We fail to find evidence of genomic deletions or amplifications affecting the Smad4 locus on chromosome 18 but show a correlation between promoter methylation and the loss of Smad4 expression in the same material. We confirm that the AR locus on the X chromosome is amplified in 30% of the advanced clinical samples and that this correlates with increased transcript levels as previously reported by other groups.
CONCLUSION: This indicates that epigenetic changes affect the expression of the Smad4 protein in prostate cancer and points to methylation of the promoter as a novel marker of and contributor to the disease warranting further study.
Resumo:
Malaria, caused by Plasmodium falciparum (P. falciparum), ranks as one of the most baleful infectious diseases worldwide. New antimalarial treatments are needed to face existing or emerging drug resistant strains. Protein degradation appears to play a significant role during the asexual intraerythrocytic developmental cycle (IDC) of P. falciparum. Inhibition of the ubiquitin proteasome system (UPS), a major intracellular proteolytic pathway, effectively reduces infection and parasite replication. P. falciparum and erythrocyte UPS coexist during IDC but the nature of their relationship is largely unknown. We used an approach based on Tandem Ubiquitin-Binding Entities (TUBEs) and 1D gel electrophoresis followed by mass spectrometry to identify major components of the TUBEs-associated ubiquitin proteome of both host and parasite during ring, trophozoite and schizont stages. Ring-exported protein (REX1), a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, was found to reach a maximum level of ubiquitylation in trophozoites stage. The Homo sapiens (H. sapiens) TUBEs associated ubiquitin proteome decreased during the infection, whereas the equivalent P. falciparum TUBEs-associated ubiquitin proteome counterpart increased. Major cellular processes such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection.
Resumo:
Dissertation presented to obtain the Doctorate degree (Ph.D.) in Biology at Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa