941 resultados para UNIT-CELL CONSTANTS
Resumo:
I. Trimesic acid (1, 3, 5-benzenetricarboxylic acid) crystallizes with a monoclinic unit cell of dimensions a = 26.52 A, b = 16.42 A, c = 26.55 A, and β = 91.53° with 48 molecules /unit cell. Extinctions indicated a space group of Cc or C2/c; a satisfactory structure was obtained in the latter with 6 molecules/asymmetric unit - C54O36H36 with a formula weight of 1261 g. Of approximately 12,000 independent reflections within the CuKα sphere, intensities of 11,563 were recorded visually from equi-inclination Weissenberg photographs.
The structure was solved by packing considerations aided by molecular transforms and two- and three-dimensional Patterson functions. Hydrogen positions were found on difference maps. A total of 978 parameters were refined by least squares; these included hydrogen parameters and anisotropic temperature factors for the C and O atoms. The final R factor was 0.0675; the final "goodness of fit" was 1.49. All calculations were carried out on the Caltech IBM 7040-7094 computer using the CRYRM Crystallographic Computing System.
The six independent molecules fall into two groups of three nearly parallel molecules. All molecules are connected by carboxylto- carboxyl hydrogen bond pairs to form a continuous array of sixmolecule rings with a chicken-wire appearance. These arrays bend to assume two orientations, forming pleated sheets. Arrays in different orientations interpenetrate - three molecules in one orientation passing through the holes of three parallel arrays in the alternate orientation - to produce a completely interlocking network. One third of the carboxyl hydrogen atoms were found to be disordered.
II. Optical transforms as related to x-ray diffraction patterns are discussed with reference to the theory of Fraunhofer diffraction.
The use of a systems approach in crystallographic computing is discussed with special emphasis on the way in which this has been done at the California Institute of Technology.
An efficient manner of calculating Fourier and Patterson maps on a digital computer is presented. Expressions for the calculation of to-scale maps for standard sections and for general-plane sections are developed; space-group-specific expressions in a form suitable for computers are given for all space groups except the hexagonal ones.
Expressions for the calculation of settings for an Eulerian-cradle diffractometer are developed for both the general triclinic case and the orthogonal case.
Photographic materials on pp. 4, 6, 10, and 20 are essential and will not reproduce clearly on Xerox copies. Photographic copies should be ordered.
Resumo:
Current technological advances in fabrication methods have provided pathways to creating architected structural meta-materials similar to those found in natural organisms that are structurally robust and lightweight, such as diatoms. Structural meta-materials are materials with mechanical properties that are determined by material properties at various length scales, which range from the material microstructure (nm) to the macro-scale architecture (μm – mm). It is now possible to exploit material size effect, which emerge at the nanometer length scale, as well as structural effects to tune the material properties and failure mechanisms of small-scale cellular solids, such as nanolattices. This work demonstrates the fabrication and mechanical properties of 3-dimensional hollow nanolattices in both tension and compression. Hollow gold nanolattices loaded in uniaxial compression demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. Structural effects were explored by increasing the unit cell angle from 30° to 60° while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200nm to 635nm, at a constant relative density and grain size. In-situ uniaxial compression experiments reveal an order-of-magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of 3-dimensional architected meta-materials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics. This work also explores the flaw tolerance of 3D hollow-tube alumina kagome nanolattices with and without pre-fabricated notches, both in experiment and simulation. Experiments demonstrate that the hollow kagome nanolattices in uniaxial tension always fail at the same load when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. For notches with (a/w) > 1/3, the samples fail at lower peak loads and this is attributed to the increased compliance as fewer unit cells span the un-notched region. Finite element simulations of the kagome tension samples show that the failure is governed by tensile loading for (a/w) < 1/3 but as (a/w) increases, bending begins to play a significant role in the failure. This work explores the flaw sensitivity of hollow alumina kagome nanolattices in tension, using experiments and simulations, and demonstrates that the discrete-continuum duality of architected structural meta-materials gives rise to their flaw insensitivity even when made entirely of intrinsically brittle materials.
Resumo:
I. The 3.7 Å Crystal Structure of Horse Heart Ferricytochrome C.
The crystal structure of horse heart ferricytochrome c has been determined to a resolution of 3.7 Å using the multiple isomorphous replacement technique. Two isomorphous derivatives were used in the analysis, leading to a map with a mean figure of merit of 0.458. The quality of the resulting map was extremely high, even though the derivative data did not appear to be of high quality.
Although it was impossible to fit the known amino acid sequence to the calculated structure in an unambiguous way, many important features of the molecule could still be determined from the 3.7 Å electron density map. Among these was the fact that cytochrome c contains little or no α-helix. The polypeptide chain appears to be wound about the heme group in such a way as to form a loosely packed hydrophobic core in the molecule.
The heme group is located in a cleft on the molecule with one edge exposed to the solvent. The fifth coordinating ligand is His 18 and the sixth coordinating ligand is probably neither His 26 nor His 33.
The high resolution analysis of cytochrome c is now in progress and should be completed within the next year.
II. The Application of the Karle-Hauptman Tangent Formula to Protein Phasing.
The Karle-Hauptman tangent formula has been shown to be applicable to the refinement of previously determined protein phases. Tests were made with both the cytochrome c data from Part I and a theoretical structure based on the myoglobin molecule. The refinement process was found to be highly dependent upon the manner in which the tangent formula was applied. Iterative procedures did not work well, at least at low resolution.
The tangent formula worked very well in selecting the true phase from the two possible phase choices resulting from a single isomorphous replacement phase analysis. The only restriction on this application is that the heavy atoms form a non-centric cluster in the unit cell.
Pages 156 through 284 in this Thesis consist of previously published papers relating to the above two sections. References to these papers can be found on page 155.
Resumo:
High-quality Ce3+-doped Y3Al5O12 (YAG:Ce3+) phosphors were synthesized by a facile sol-gel combustion method. In this sol-gel combustion process, citric acid acts as a fuel for combustion, traps the constituent cations and reduces the diffusion length of the precursors. The XRD and FT-IR results show that YAG phase can form through sintering at 900 degrees C for 2 h. This temperature is much lower than that required to synthesize YAG phase via the solid-state reaction method. There were no intermediate phases such as YAlO3 (YAP) and Y4Al2O9 (YAM) observed in the sintering process. The average grain size of the phosphors sintered at 900-1100 degrees C is about 40 nm. With the increasing of sintering temperature, the emission intensity increases due to the improved crystalline and homogeneous distribution of Ce3+ ions. A blue shift has been observed in the Ce3+ emission spectrum of YAG:Ce3+ phosphors with increasing sintering temperatures from 900 to 1200 degrees C. It can be explained that the decrease of lattice constant affects the crystal field around Ce3+ ions. The emission intensity of 0.06Ce-doped YAG phosphors is much higher than that of the 0.04Ce and 0.02Ce ones. The red-shift at higher Ce3+ concentrations may be Ce-Ce interactions or variations in the unit cell parameters between YAG:Ce3+ and YAG. It can be concluded that the sol-gel combustion synthesis method provides a good distribution of Ce3+ activators at the molecular level in YAG matrix. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Novos protótipos de fármacos estão constantemente a ser sintetizados e muitas estruturas cristalinas de outros ainda são desconhecidas. Tão importante quanto o planejamento e síntese de novos fármacos é a sua caracterização estrutural, uma vez que a sua estrutura (conformação) pode estar diretamente relacionada com a ação terapêutica. O uso da difração de raios X tem sido muito importante na determinação estrutural dos novos compostos sintetizados. Neste trabalho foi feita a determinação da estrutura de LASSBio-1755 com os dados de difração de raios X por policristais. Este composto foi sintetizado no Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio) da Universidade Federal do Rio de Janeiro. O composto LASSBio-1755 pertence a uma nova série de compostos cicloalquil-N-acilidrazônicos planejados para o desenvolvimento de protótipos com atividades antinociceptiva e anti-inflamatórios. Este composto cristalizou-se num sistema triclínico com grupo espacial (P ), com parâmetros de cela unitária a = 4,86647(9) Å, b = 9,3108(2) Å, c = 11,3402(2) Å, α = 106,649(1), β = 101,958(1), γ = 82,629(2) e V = 480,30(2) Å3. A estrutura cristalina de LASSBio-1755 consiste em duas fórmulas unitárias por cela unitária (Z = 2), acomodando uma molécula na unidade assimétrica (Z' = 1). O Método de Rietveld foi utilizado para refinar a estrutura cristalina e o indicador de qualidade do ajuste, bem como os fatores R foram, respectivamente: χ2 = 1,131, RBragg = 0,856%, Rwp =4,174% e o Rexp= 3,692%. As técnicas de calorimetria exploratória diferencial, termogravimetria e espectroscopia no infravermelho por transformada de Fourier também foram utilizadas para análise do composto LASSBio-1755 e os seus resultados corroboraram com os obtidos através da técnica de difração de raios X por policristais.
Resumo:
O objetivo deste trabalho é a síntese e investigação estrutural e óptica de amostras SrGa2O4 dopados com 1% de íons Ni2+. Estas amostras foram sintetizados por reação do estado sólido convencional, utilizando como materiais de partida de alta pureza Ga2O3, SrCO3 e NiO em quantidades estequiométricas. As amostras foram caracterizadas estruturalmente pelo método de difração de raios - X( XRD ) e as medições de difração mostraram que as amostras têm uma única fase monoclínica. Os padrões de XRD também foram refinados pelo método de Rietveld, que permitiu a determinação dos parâmetros de célula unitária. A Caracterização óptica das amostras puras e dopadas SrGa2O4 foram realizadas as medições a partir de fotoluminescência, de excitação e de absorção fotoacústica, à temperatura ambiente. Os espectros de emissão mostraram três bandas de emissão localizadas em 557 nm, 661 nm e 844 nm e foram identificadas essas bandas, respectivamente, com as seguintes transições eletrônicas :1T2 (1D) → 3A2 (3F), 3T1 (3F)→ 3A2 (3F) e 1T2 (1D) → 3T2 (3F). Os espectros de excitação mostraram seis bandas de absorção associadas às transições electrônicas do nível 3A2 (3F) para o 3T1 (3P) , T1 (3P), 1A1 (1G), 1T2 (1D), 3T1 (3F), 1E (1D) e 1T2, 1E (1G). Medidas de absorção fotoacústica também foram realizados com o fim de verificar as transições ópticas observadas nos espectros de excitação e de identificar novas bandas de absorção óptica. Os resultados demonstraram que os íons de Ni2+ ocupam dois locais octaédricos diferentes na amostra SrGa2O4 dopado. A partir das transições ópticas observadas nos espectros de excitação e fotoacústica, determinou-se o parâmetro de cristal de campo, dq, e parâmetros Racah, B e C. A proporção Dq / B ≈ 1.2 para ambos os locais são típicos para Ni2+ íons inseridos em redes de óxido e em coordenação octaédrica.
Resumo:
Melt-textured YBCO samples processed with added Y2O3 and depleted uranium oxide (DU) contain nano-particles, which have been identified previously as Y2Ba4CuUOx (U-411). This phase has a cubic unit cell, which is clearly distinct from the orthorhombic Y-123 and Y-211 phases within the YBCO system. In samples with a high amount of DU addition (0.8 wt-% DU), U-2411 particles have sizes between 200 nm and several νm, so identification of the Kikuchi patterns of this phase becomes possible. Together with a parallel EDX analysis, the particles embedded in the Y-123 matrix can be identified unambiguously. In this way, a three-phase EBSD scan becomes possible, allowing also the identification of nanometre-sized particles in the sample microstructure. © 2006 IOP Publishing Ltd.
Resumo:
Capacitance-voltage (C-V) characteristics of lead zirconate titanate (PZT) thin films with a thickness of 130 nm were measured between 300 and 533 K. The transition between ferroelectric and paraelectric phases was revealed to be of second order in our case, with a Curie temperature at around 450 K. A linear relationship was found between the measured capacitance and the inverse square root of the applied voltage. It was shown that such a relationship could be fitted well by a universal expression of C/A = k(V+V(0))(-1/2) and that this expression could be derived by expanding the Landau-Devonshire free energy at an effective equilibrium position of the Ti/Zr ion in a PZT unit cell. By using the derived equations in this work, the free energy parameters for an individual material can be obtained solely from the corresponding C-V data, and the temperature dependences of both remnant polarization and coercive voltage are shown to be in quantitative agreement with the experimental data.
Resumo:
One of the major concerns for engineers in seismically active regions is the prevention of damage caused by earthquake-induced soil liquefaction. Vertical drains can aid dissipation of excess pore pressures both during and after earthquakes. Drain systems are designed using standard design charts based around the concept of a unit cell, assuming each drain is surrounded by more drains. It is unclear how predictable drain performance is outside that unit cell concept, for example, drains at the edge of a group. Centrifuge testing is a logical method of performing controlled experiments to establish the efficacy of vertical drains. Centrifuge testing is used to identify the effect of drains dealing with very different catchment areas. The importance of this is further highlighted by the results of a test where the same drains have been modified so that each should behave as a unit cell. It is shown that drains with large catchment areas perform more poorly than unit cells, and also have a knock-on detrimental effect on other drains. Copyright © 2011, IGI Global.
Resumo:
The paper presents a multiscale procedure for the linear analysis of components made of lattice materials. The method allows the analysis of both pin-jointed and rigid-jointed microtruss materials with arbitrary topology of the unit cell. At the macroscopic level, the procedure enables to determine the lattice stiffness, while at the microscopic level the internal forces in the lattice elements are expressed in terms of the macroscopic strain applied to the lattice component. A numeric validation of the method is described. The procedure is completely automated and can be easily used within an optimization framework to find the optimal geometric parameters of a given lattice material. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The structural, magnetic and electrical transport properties of the Sn-doped TbMnO3 manganites are studied by X-ray diffraction, ac susceptibility, dc magnetization and electrical resistivity measurements. The Sn doping into the Tb and Mn sites of TbMnO3 compresses the unit cell and changes parameters of the antiferromagnetic phase whereas the magnetic moment of Mn are only weakly affected. The electrical resistivity of doped manganites is reduced and the activation energy EA is determined for the thermally activated conduction. © 2007 Elsevier B.V. All rights reserved.
Resumo:
LiMn2-xTixO4 compounds with 0 ≤ x ≤ 1 were prepared by solid state reaction and Pechini technique. Powder X-ray diffraction showed that all samples crystallize with the spinel crystal structure (S.G. Fd3-m). The cubic unit-cell parameter increases with the Ti content. The influence of the Ti content and cationic distribution on the magnetic properties of the compounds was studied by measuring the temperature and magnetic field dependences of the magnetization: substitution by non-magnetic d0 Ti4+ ions appeared to weaken the magnetic interactions between the manganese ions. The electrical properties of LiMnTiO4 were studied by AC impedance spectroscopy and DC polarisation measurements, which revealed the electronic character of the conduction process. © 2006 Elsevier B.V. All rights reserved.
Resumo:
A symmetry-adapted version of the Maxwell rule appropriate to periodic bar-and-joint frameworks is obtained, and is further extended to body-and-joint systems. The treatment deals with bodies and forces that are replicated in every unit cell, and uses the point group isomorphic to the factor group of the space group of the framework. Explicit expressions are found for the numbers and symmetries of detectable mechanisms and states of self-stress in terms of the numbers and symmetries of framework components. This approach allows detection and characterization of mechanisms and states of self-stress in microscopic and macroscopic materials and meta-materials. Illustrative examples are described. The notion of local isostaticity of periodic frameworks is extended to include point-group symmetry.
Resumo:
Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation.
Resumo:
Genetic Algorithms (GAs) were used to design triangular lattice photonic crystals with large absolute band-gap. Considering fabricating issues, the algorithms represented the unit cell with large pixels and took the largest absolute band-gap under the fifth band as the objective function. By integrating Fourier transform data storage mechanism, the algorithms ran efficiently and effectively and optimized a triangular lattice photonic crystal with scatters in the shape of 'dielectric-air rod'. It had a large absolute band gap with relative width (ratio of gap width to midgap) 23.8%.