984 resultados para ULTRASOUND-ASSISTED SYNTHESIS
Resumo:
Die vorliegende Arbeit befasst sich mit der Synthese von nanostrukturierten Antimoniden, wobei die folgenden beiden Themen bearbeitet wurden: rnAus chemischer Sicht wurden neue Synthesewege entwickelt, um Nanopartikel der Verbindungen in den binären Systemen Zn-Sb und Fe-Sb herzustellen (Zn4Sb3, ZnSb, FeSb2, Fe1+xSb). Anders als in konventionellen Festkörperreaktionen, die auf die Synthese von Bulk-Materialien oder Einkristallen zielen, muss die Synthese von Nanopartikeln Agglomerate und Ostwald-Wachstum vermeiden. Daher benötigen annehmbare Reaktionszeiten und vergleichsweise tiefe Reaktionstemperaturen kurze Diffusionswege und tiefe Aktivierungsbarrieren. Demzufolge bedient sich die Synthese der Reaktion von Antimon-Nanopartikeln und geeigneten molekularen oder nanopartikulären Edukten der entsprechenden Übergangsmetalle. Zusätzlich wurden anisotrope ZnSb Strukturen synthetisiert, indem eine Templat-Synthese mit Hilfe von anodisierten Aluminiumoxid- oder Polycarbonat-Membranen angewandt wurde. rnDie erhaltenen Produkte wurden hauptsächlich durch Röntgen-Diffraktion und Elektronenmikroskopie untersucht. Die Auswertung der Pulver Röntgendiffraktions-Daten stellte eine Herausforderung dar, da die Nanostrukturierung und die Anwesenheit von mehreren Phasen zu verbreiterten und überlagernden Reflexen führen. Zusätzliche Fe-Mößbauer Messungen wurden im Falle der Fe-Sb Produkte vorgenommen, um detailliertere Informationen über die genaue Zusammensetzung zu erhalten. Die erstmals hergestellte Phase Zn1+xSb wurde einer detaillierten Kristallstrukturanalyse unterzogen, die mit Hilfe einer neuen Diffraktionsmethode, der automatisierten Elektronen Diffraktions Tomographie, durchgeführt wurde.rnrnAus physikalischer Sicht sind Zn4Sb3, ZnSb und FeSb2 interessante thermoelektrische Materialien, die aufgrund ihrer Fähigkeit thermische in elektrische Energie umzuwandeln, großes Interesse geweckt haben. Nanostrukturierte thermoelektrische Materialien zeigen dabei eine höhere Umwandlungseffizienz zu erhöhen, da deren thermische Leitfähigkeit herabgesetzt ist. Da thermoelektrische Bauteile aus dichten Bulk-Materialien gefertigt werden, spielte die Verfestigung der synthetisierten nanopartikulären Pulver eine große Rolle. Die als „Spark Plasma Sintering“ bezeichnete Methode wurde eingesetzt, um die Proben zu pressen. Dies ermöglicht schnelles Heizen und Abkühlen der Probe und kann so das bei klassischen Heißpress-Methoden unvermeidliche Kristallitwachstum verringern. Die optimalen Bedingungen für das Spark Plasma Sintern zu finden, ist Inhalt von bestehender und weiterführender Forschung. rnEin Problem stellt die Stabilität der Proben während des Sinterns dar. Trotz des schnellen Pressens wurde eine teilweise Zersetzung im Falle des Zn1+xSb beobachtet, wie mit Hilfe von Synchrotrondiffraktionsuntersuchungen aufgedeckt wurde. Morphologie und Dichte der verschiedenen verfestigten Materialien wurden mittels Rasterelektronenmikroskopie und Lasermikroskopie bestimmt. Die Gitterdynamik wurde mit Hilfe von Wärmekapazitätsmessungen- und inelastischer Kern-Streuung untersucht. Die Wärmeleitfähigkeit der nanostrukturierten Materialien ist im Vergleich zu den Festkörpern ist drastisch reduziert - im Falle des FeSb2 um mehr als zwei Größenordnungen. Abhängig von der Zusammensetzung und mechanischen Härte wurden für einen Teil der verfestigten Nanomaterialien die thermoelektrische Eigenschaften, wie Seebeck Koeffizient, elektrische und Wärmeleitfähigkeit, gemessen.rn
Resumo:
This paper presents methods based on Information Filters for solving matching problems with emphasis on real-time, or effectively real-time applications. Both applications discussed in this work deal with ultrasound-based rigid registration in computer-assisted orthopedic surgery. In the first application, the usual workflow of rigid registration is reformulated such that registration algorithms would iterate while the surgeon is acquiring ultrasound images of the anatomy to be operated. Using this effectively real-time approach to registration, the surgeon would then receive feedback in order to better gauge the quality of the final registration outcome. The second application considered in this paper circumvents the need to attach physical markers to bones for anatomical referencing. Experiments using anatomical objects immersed in water are performed in order to evaluate and compare the different methods presented herein, using both 2D as well as real-time 3D ultrasound.
Resumo:
In the field of computer assisted orthopedic surgery (CAOS) the anterior pelvic plane (APP) is a common concept to determine the pelvic orientation by digitizing distinct pelvic landmarks. As percutaneous palpation is - especially for obese patients - known to be error-prone, B-mode ultrasound (US) imaging could provide an alternative means. Several concepts of using ultrasound imaging to determine the APP landmarks have been introduced. In this paper we present a novel technique, which uses local patch statistical shape models (SSMs) and a hierarchical speed of sound compensation strategy for an accurate determination of the APP. These patches are independently matched and instantiated with respect to associated point clouds derived from the acquired ultrasound images. Potential inaccuracies due to the assumption of a constant speed of sound are compensated by an extended reconstruction scheme. We validated our method with in-vitro studies using a plastic bone covered with a soft-tissue simulation phantom and with a preliminary cadaver trial.
Resumo:
The atom efficient phospha-Michael reaction between bis 4-methylphenyl phosphine oxide and several activated internal alkenes has been shown to occur under microwave irradiation without added solvent or catalyst. The alkenes used for this study were ethyl 4-nitrocinnamate, two chalcones ((E)-3-(4-methoxy-phenyl)-1-(4- nitrophenyl)-prop-2-en-1-one and (E)-1-(4-methoxyphenyl)-3-(3-nitro-phenyl)-prop-2- en-1-one), and 2-phenylmethylene-propanedinitrile. In the case of ethyl 4-nitrocinnamate, reaction with bis 4-methylphenyl phosphine oxide for sixty minutes at 130 °C yielded the desired phospha-Michael product in a 55% yield after purification. Varying the location of the nitro group on the phenyl rings of the chalcones did not seem to have a large effect on their reactivity. By NMR, both chalcones seemed to react to the same extent when the reaction times and temperatures were held constant. Interestingly, a phospha-Michael reaction was observed at a reaction temperature of 65°C for experiments involving 2- phenyl-methylene-propanedinitrile while the other substrates required a reaction temperature of 130 °C. Similar experiments were carried out with bis mesityl phosphine oxide and two internal alkenes: 2-phenylmethylene-propanedinitrile and ethyl-2-cyano-3- methyl-2-butenoate. These experiments did not yield any of the predicted phospha- Michael products, which suggest steric limitations to the Michael donor for this reaction.
Resumo:
This paper proposes methods to circumvent the need to attach physical markers to bones for anatomical referencing in computer-assisted orthopedic surgery. Using ultrasound, a bone could be non-invasively referenced, and so the problem is formulated as the need for dynamic registration. A method for correspondence establishment is presented, and the matching step is based on three least-squares algorithms: two that are typically used in registration methods such as ICP, and the third is a form of the Unscented Kalman filter that was adapted to work in this context. A simulation was developed in order to reliably evaluate and compare the dynamic registration methods
Resumo:
CONTEXT Robot-assisted surgery is increasingly used for radical cystectomy (RC) and urinary reconstruction. Sufficient data have accumulated to allow evidence-based consensus on key issues such as perioperative management, comparative effectiveness on surgical complications, and oncologic short- to midterm outcomes. OBJECTIVE A 2-d conference of experts on RC and urinary reconstruction was organized in Pasadena, California, and the City of Hope Cancer Center in Duarte, California, to systematically review existing peer-reviewed literature on robot-assisted RC (RARC), extended lymphadenectomy, and urinary reconstruction. No commercial support was obtained for the conference. EVIDENCE ACQUISITION A systematic review of the literature was performed in agreement with the PRISMA statement. EVIDENCE SYNTHESIS Systematic literature reviews and individual presentations were discussed, and consensus on all key issues was obtained. Most operative, intermediate-term oncologic, functional, and complication outcomes are similar between open RC (ORC) and RARC. RARC consistently results in less blood loss and a reduced need for transfusion during surgery. RARC generally requires longer operative time than ORC, particularly with intracorporeal reconstruction. Robotic assistance provides ergonomic value for surgeons. Surgeon experience and institutional volume strongly predict favorable outcomes for either open or robotic techniques. CONCLUSIONS RARC appears to be similar to ORC in terms of operative, pathologic, intermediate-term oncologic, complication, and most functional outcomes. RARC consistently results in less blood loss and a reduced need for transfusion during surgery. RARC can be more expensive than ORC, although high procedural volume may attenuate this difference. PATIENT SUMMARY Robot-assisted radical cystectomy (RARC) is an alternative to open surgery for patients with bladder cancer who require removal of their bladder and reconstruction of their urinary tract. RARC appears to be similar to open surgery for most important outcomes such as the rate of complications and intermediate-term cancer-specific survival. Although RARC has some ergonomic advantages for surgeons and may result in less blood loss during surgery, it is more time consuming and may be more expensive than open surgery.
Resumo:
CONTEXT Although open radical cystectomy (ORC) is still the standard approach, laparoscopic radical cystectomy (LRC) and robot-assisted radical cystectomy (RARC) are increasingly performed. OBJECTIVE To report on a systematic literature review and cumulative analysis of pathologic, oncologic, and functional outcomes of RARC in comparison with ORC and LRC. EVIDENCE ACQUISITION Medline, Scopus, and Web of Science databases were searched using a free-text protocol including the terms robot-assisted radical cystectomy or da Vinci radical cystectomy or robot* radical cystectomy. RARC case series and studies comparing RARC with either ORC or LRC were collected. A cumulative analysis was conducted. EVIDENCE SYNTHESIS The searches retrieved 105 papers, 87 of which reported on pathologic, oncologic, or functional outcomes. Most series were retrospective and had small case numbers, short follow-up, and potential patient selection bias. The lymph node yield during lymph node dissection was 19 (range: 3-55), with half of the series following an extended template (yield range: 11-55). The lymph node-positive rate was 22%. The performance of lymphadenectomy was correlated with surgeon and institutional volume. Cumulative analyses showed no significant difference in lymph node yield between RARC and ORC. Positive surgical margin (PSM) rates were 5.6% (1-1.5% in pT2 disease and 0-25% in pT3 and higher disease). PSM rates did not appear to decrease with sequential case numbers. Cumulative analyses showed no significant difference in rates of surgical margins between RARC and ORC or RARC and LRC. Neoadjuvant chemotherapy use ranged from 0% to 31%, with adjuvant chemotherapy used in 4-29% of patients. Only six series reported a mean follow-up of >36 mo. Three-year disease-free survival (DFS), cancer-specific survival (CSS), and overall survival (OS) rates were 67-76%, 68-83%, and 61-80%, respectively. The 5-yr DFS, CSS, and OS rates were 53-74%, 66-80%, and 39-66%, respectively. Similar to ORC, disease of higher pathologic stage or evidence of lymph node involvement was associated with worse survival. Very limited data were available with respect to functional outcomes. The 12-mo continence rates with continent diversion were 83-100% in men for daytime continence and 66-76% for nighttime continence. In one series, potency was recovered in 63% of patients who were evaluable at 12 mo. CONCLUSIONS Oncologic and functional data from RARC remain immature, and longer-term prospective studies are needed. Cumulative analyses demonstrated that lymph node yields and PSM rates were similar between RARC and ORC. Conclusive long-term survival outcomes for RARC were limited, although oncologic outcomes up to 5 yr were similar to those reported for ORC. PATIENT SUMMARY Although open radical cystectomy (RC) is still regarded as the standard treatment for muscle-invasive bladder cancer, laparoscopic and robot-assisted RCs are becoming more popular. Templates of lymph node dissection, lymph node yields, and positive surgical margin rates are acceptable with robot-assisted RC. Although definitive comparisons with open RC with respect to oncologic or functional outcomes are lacking, early results appear comparable.
Resumo:
Δ(9)-tetrahydrocannabinol (Δ(9)-THC) is the major psychoactive cannabinoid in hemp (Cannabis sativa L.) and responsible for many of the pharmacological effects mediated via cannabinoid receptors. Despite being the major cannabinoid scaffold in nature, Δ(9)-THC double bond isomers remain poorly studied. The chemical scaffold of tetrahydrocannabinol can be assembled from the condensation of distinctly substituted phenols and monoterpenes. Here we explored a microwave-assisted one pot heterogeneous synthesis of Δ(3)-THC from orcinol (1a) and pulegone (2). Four Δ(3)-THC analogues and corresponding Δ(4a)-tetrahydroxanthenes (Δ(4a)-THXs) were synthesized regioselectively and showed differential binding affinities for CB1 and CB2 cannabinoid receptors. Here we report for the first time the CB1 receptor binding of Δ(3)-THC, revealing a more potent receptor binding affinity for the (S)-(-) isomer (hCB1Ki = 5 nM) compared to the (R)-(+) isomer (hCB1Ki = 29 nM). Like Δ(9)-THC, also Δ(3)-THC analogues are partial agonists at CB receptors as indicated by [(35)S]GTPγS binding assays. Interestingly, the THC structural isomers Δ(4a)-THXs showed selective binding and partial agonism at CB2 receptors, revealing a simple non-natural natural product-derived scaffold for novel CB2 ligands.
Resumo:
OBJECTIVES The intensity of post-egg retrieval pain is underestimated, with few studies examining post-procedural pain and predictors to identify women at risk for severe pain. We evaluated the influence of pre-procedural hormonal levels, ovarian factors, as well as mechanical temporal summation (mTS) as predictors for post-egg retrieval pain in women undergoing in vitro fertilization (IVF). METHODS Eighteen women scheduled for ultrasound-guided egg retrieval under standardized anesthesia and post-procedural analgesia were enrolled. Pre-procedural mTS, questionnaires, clinical data related to anesthesia and the procedure itself, post-procedural pain scores and pain medication for breakthrough pain were recorded. Statistical analysis included Pearson product moment correlations, Mann-Whitney U tests and multiple linear regressions. RESULTS Average peak post-egg retrieval pain during the first 24 hours was 5.0±1.6 on an NRS scale (0=no pain, 10=worst pain imaginable). Peak post-egg retrieval pain was correlated with basal antimullerian hormone (AMH) (r=0.549, P=0.018), pre-procedural peak estradiol (r=0.582, P=0.011), total number of follicles (r=0.517, P=0.028) and number of retrieved eggs (r=0.510, P=0.031). Ovarian hyperstimulation syndrome (OHSS) (n=4) was associated with higher basal AMH (P=0.004), higher peak pain scores (P=0.049), but not with peak estradiol (P=0.13). The mTS did not correlate with peak post-procedural pain (r=0.266, P=0.286), or peak estradiol level (r=0.090, P=0.899). DISCUSSION Peak post-egg retrieval pain intensity was higher than anticipated. Our results suggest that post-egg retrieval pain can be predicted by baseline AMH, high peak estradiol, and OHSS. Further studies to evaluate intra- and post-procedural pain in this population are needed, as well as clinical trials to assess post-procedural analgesia in women presenting with high hormonal levels.
Resumo:
We report on the bottom-up fabrication of BN-substituted heteroaromatic networks achieved by surface-assisted polymerization and subsequent cyclodehydrogenation of specifically designed BN-substituted precursor monomers based on a borazine core structural element. To get insight into the cyclodehydrogenation pathway and the influence of molecular flexibility on network quality, two closely related precursor monomers with different degrees of internal cyclodehydrogenation have been employed. Scanning tunneling microscopy shows that, for both monomers, surface-assisted cyclodehydrogenation allows for complete monomer cyclization and the formation of covalently interlinked BN-substituted polyaromatic hydrocarbon networks on the Ag(111) surface. In agreement with experimental observations, density functional theory calculations reveal a significantly lower energy barrier for the cyclodehydrogenation of the conformationally more rigid precursor monomer, which is also reflected in a higher degree of long-range order of the obtained heteroaromatic network. Our proof-of-concept study will allow for the fabrication of atomically precise substitution patterns within BNC heterostructures.