975 resultados para Tyrosine-phosphatase
Resumo:
FEBS journal, Volume 278, Issue 14, pages 2511-2524, July 2011
Resumo:
According to the new KDIGO (Kidney Disease Improving Global Outcomes) guidelines, the term of renal osteodystrophy, should be used exclusively in reference to the invasive diagnosis of bone abnormalities. Due to the low sensitivity and specificity of biochemical serum markers of bone remodelling,the performance of bone biopsies is highly stimulated in dialysis patients and after kidney transplantation. The tartrate-resistant acid phosphatase (TRACP) is an iso-enzyme of the group of acid phosphatases, which is highly expressed by activated osteoclasts and macrophages. TRACP in osteoclasts is in intracytoplasmic vesicles that transport the products of bone matrix degradation. Being present in activated osteoclasts, the identification of this enzyme by histochemistry in undecalcified bone biopsies is an excellent method to quantify the resorption of bone. Since it is an enzymatic histochemical method for a thermolabile enzyme, the temperature at which it is performed is particularly relevant. This study aimed to determine the optimal temperature for identification of TRACP in activated osteoclasts in undecalcified bone biopsies embedded in methylmethacrylate. We selected 10 cases of undecalcified bone biopsies from hemodialysis patients with the diagnosis of secondary hyperparathyroidism. Sections of 5 μm were stained to identify TRACP at different incubation temperatures (37º, 45º, 60º, 70º and 80ºC) for 30 minutes. Activated osteoclasts stained red and trabecular bone (mineralized bone) was contrasted with toluidine blue. This approach also increased the visibility of the trabecular bone resorption areas (Howship lacunae). Unlike what is suggested in the literature and in several international protocols, we found that the best results were obtained with temperatures between 60ºC and 70ºC. For technical reasons and according to the results of the present study, we recommended that, for an incubation time of 30 minutes, the reaction should be carried out at 60ºC. As active osteoclasts are usually scarce in a bone section, the standardization of the histochemistry method is of great relevance, to optimize the identification of these cells and increase the accuracy of the histomosphometric results. Our results, allowing an increase in osteoclasts contrast, also support the use of semi-automatic histomorphometric measurements.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry
Resumo:
Tyrosine hydroxylase (TH) deficiency is an inborn error of dopamine biosynthesis and a cause of early parkinsonism. Two clinical phenotypes have been described. Type “B”: early onset severe encephalopathy; type “A”: later onset, less severe and better response to L-dopa. We aimed to study the expression of several key dopaminergic and gabaergic synaptic proteins in the cerebrospinal fluid (CSF) of a series of patients with TH deficiency and their possible relation with the clinical phenotype and response to L-DOPA. Dopamine transporter (DAT), D2-receptor and vesicularmonoamine transporter (VMAT2)weremeasured in the CSF of 10 subjectswith THdeficiency byWestern blot analysis. In 3 patients, data of pre- and post-treatmentwith L-DOPA were available, and in one of them, GABA vesicular transporter was determined. Results were compared to an age-matched control population. The concentration of D2-receptors in CSFwas significantly higher in patients with TH deficiency than in controls. Similarly, DAT and vesicular monoamine transporter type 2 were up-regulated. Studies performed before LDOPA, and on L-DOPA therapy showed a paradoxical response with D2 receptor expression increase as L-Dopa doses and homovanillic concentration gradually raised in a B phenotype patient. The opposite results were found in two patients with A phenotype. However, this is a very small sample, and further studies are needed to conclude robust differences between phenotypes. Synaptic proteins are detectable in the CSF and their quantification can be useful for understanding the pathophysiology of neurotransmitter defects and potentially to adjust and personalize treatments in the future.
Resumo:
AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase, HAD, superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. Based on substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolise several related secondary metabolites requires regulation at the genetic level. Here, by site- directed mutagenesis, we show that AraL production is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of HAD subfamily IIA and IIB are characterised by a broad-range and overlapping specificity that anticipated the need for regulation at the genetic level. In this study we provide evidence for the existence of a genetic regulatory mechanism controlling AraL production.
Resumo:
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.
Resumo:
The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.
Resumo:
Excess reactive oxygen species (ROS) formation can trigger various pathological conditions such as inflammation, in which xanthine oxidase (XO) is one major enzymatic source of ROS. Although XO has been reported to play essential roles in inflammatory conditions, the molecular mechanisms underlying the involvement of XO in inflammatory pathways remain unclear. Febuxostat, a selective and potent inhibitor of XO, effectively inhibits not only the generation of uric acid but also the formation of ROS. In this study, therefore, we examined the effects of febuxostat on lipopolysaccharide (LPS)-mediated inflammatory responses. Here we show that febuxostat suppresses LPS-induced MCP-1 production and mRNA expression via activating MAPK phosphatase-1 (MKP-1) which, in turn, leads to dephosphorylation and inactivation of JNK in macrophages. Moreover, these effects of febuxostat are mediated by inhibiting XO-mediated intracellular ROS production. Taken together, our data suggest that XO mediates LPS-induced phosphorylation of JNK through ROS production and MKP-1 inactivation, leading to MCP-1 production in macrophages. These studies may bring new insights into the novel role of XO in regulating inflammatory process through MAPK phosphatase, and demonstrate the potential use of XO inhibitor in modulating the inflammatory processes.
Resumo:
We used whole-exome sequencing to study three individuals with a distinct condition characterized by short stature, chondrodysplasia with brachydactyly, congenital joint dislocations, cleft palate, and facial dysmorphism. Affected individuals carried homozygous missense mutations in IMPAD1, the gene coding for gPAPP, a Golgi-resident nucleotide phosphatase that hydrolyzes phosphoadenosine phosphate (PAP), the byproduct of sulfotransferase reactions, to AMP. The mutations affected residues in or adjacent to the phosphatase active site and are predicted to impair enzyme activity. A fourth unrelated patient was subsequently found to be homozygous for a premature termination codon in IMPAD1. Impad1 inactivation in mice has previously been shown to produce chondrodysplasia with abnormal joint formation and impaired proteoglycan sulfation. The human chondrodysplasia associated with gPAPP deficiency joins a growing number of skeletoarticular conditions associated with defective synthesis of sulfated proteoglycans, highlighting the importance of proteoglycans in the development of skeletal elements and joints.
Resumo:
Ultrastructural and cytochemical studies of peroxidase and acid phosphatase were performed in skin, lymph node and heart muscle tissue of thesus monkeys with experimental Chagas's disease. At the site of inoculation ther was a proliferative reaction with the presence of immature macrophages revealed by peroxidase technique. At the lymph node a difuse inflammatory exudate with mononuclear cells, fibroblasts and immature activated macrophages reproduces the human patrtern of acute Chagas' disease inflamatory lesions. The hearth muscle cells present different degrees of degenerative alterations and a striking increase in the number of lysosomal profiles that exhibit acid hydrolase reaction product. A strong inflammatory reaction was present due to lymphocytic infiltrate or due to eosinophil granulocytes associated to ruptured cells. The present study provides some experimental evidences that the monkey model could be used as a reliable model to characterize histopathological alterations of the human disease.
Resumo:
PURPOSE: Platelet-derived growth factor receptor-alpha (PDGFRA) mutations are found in approximately 5% to 7% of advanced gastrointestinal stromal tumors (GIST). We sought to extensively assess the activity of imatinib in this subgroup. EXPERIMENTAL DESIGN: We conducted an international survey among GIST referral centers to collect clinical data on patients with advanced PDGFRA-mutant GISTs treated with imatinib for advanced disease. RESULTS: Fifty-eight patients were included, 34 were male (59%), and median age at treatment initiation was 61 (range, 19-83) years. The primary tumor was gastric in 40 cases (69%). Thirty-two patients (55%) had PDGFRA-D842V substitutions whereas 17 (29%) had mutations affecting other codons of exon 18, and nine patients (16%) had mutation in other exons. Fifty-seven patients were evaluable for response, two (4%) had a complete response, eight (14%) had a partial response, and 23 (40%) had stable disease. None of 31 evaluable patients with D842V substitution had a response, whereas 21 of 31 (68%) had progression as their best response. Median progression-free survival was 2.8 [95% confidence interval (CI), 2.6-3.2] months for patients with D842V substitution and 28.5 months (95% CI, 5.4-51.6) for patients with other PDGFRA mutations. With 46 months of follow-up, median overall survival was 14.7 months for patients with D842V substitutions and was not reached for patients with non-D842V mutations. CONCLUSIONS: This study is the largest reported to date on patients with advanced PDGFRA-mutant GISTs treated with imatinib. Our data confirm that imatinib has little efficacy in the subgroup of patients with D842V substitution in exon 18, whereas other mutations appear to be sensitive to imatinib. Clin Cancer Res; 18(16); 4458-64. ©2012 AACR.
Resumo:
Very little is known about early molecular events triggering epithelial cell differentiation. We have examined the possible role of tyrosine phosphorylation in this process, as observed in cultures of primary mouse keratinocytes after exposure to calcium or 12-O-tetradecanoylphorbol-13-acetate (TPA). Immunoblotting with phosphotyrosine-specific antibodies as well as direct phosphoamino acid analysis revealed that induction of tyrosine phosphorylation occurs as a very early and specific event in keratinocyte differentiation. Very little or no induction of tyrosine phosphorylation was observed in a keratinocyte cell line resistant to the differentiating effects of calcium. Treatment of cells with tyrosine kinase inhibitors prevented induction of tyrosine phosphorylation by calcium and TPA and interfered with the differentiative effects of these agents. These results suggest that specific activation of tyrosine kinase(s) may play an important regulatory role in keratinocyte differentiation.
Resumo:
To investigate the molecular basis that makes heterodimeric CD8alphabeta a more efficient coreceptor than homodimeric CD8alphaalpha, we used various CD8 transfectants of T1.4 T cell hybridomas, which are specific for H-2Kd, and a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). We demonstrate that CD8 is palmitoylated at the cytoplasmic tail of CD8beta and that this allows partitioning of CD8alphabeta, but not of CD8alphaalpha, in lipid rafts. Localization of CD8 in rafts is crucial for its coreceptor function. First, association of CD8 with the src kinase p56lck takes place nearly exclusively in rafts, mainly due to increased concentration of both components in this compartment. Deletion of the cytoplasmic domain of CD8beta abrogated localization of CD8 in rafts and association with p56lck. Second, CD8-mediated cross-linking of p56lck by multimeric Kd-peptide complexes or by anti-CD8 Ab results in p56lck activation in rafts, from which the abundant phosphatase CD45 is excluded. Third, CD8-associated activated p56lck phosphorylates CD3zeta in rafts and hence induces TCR signaling and T cell activation. This study shows that palmitoylation of CD8beta is required for efficient CD8 coreceptor function, mainly because it dramatically increases CD8 association with p56lck and CD8-mediated activation of p56lck in lipid rafts.
Resumo:
Les médicaments anticancéreux sont souvent caractérisés par une importante variabilité pharmacocinétique interindividuelle, des relations entre concentration et réponse clinique et une marge thérapeutique étroite. Pourtant, le suivi thérapeutique des concentrations de ces médicaments (TDM) est encore rare en oncologie. Les bases scientifiques justifiant un TDM des nouvelles thérapies ciblées orales sont encore très hétérogènes. Cependant, d'assez solides évidences existent pour l'imatinib et certaines apparaissent progressivement pour d'autres composés. A côté de cela, le TDM est aussi pratiqué dans des situations spécifiques de traitement par certaines chimiothérapies conventionnelles. Des efforts considérables restent toutefois à réaliser pour mieux caractériser la pharmacocinétique de ces médicaments, pour préciser leurs relations concentration-effet et pour conduire des études prospectives randomisées évaluant le bénéfice clinique de l'approche TDM en oncologie.