966 resultados para Two-point boundary value problems
Resumo:
This work is concerned with the design and analysis of hp-version discontinuous Galerkin (DG) finite element methods for boundary-value problems involving the biharmonic operator. The first part extends the unified approach of Arnold, Brezzi, Cockburn & Marini (SIAM J. Numer. Anal. 39, 5 (2001/02), 1749-1779) developed for the Poisson problem, to the design of DG methods via an appropriate choice of numerical flux functions for fourth order problems; as an example we retrieve the interior penalty DG method developed by Suli & Mozolevski (Comput. Methods Appl. Mech. Engrg. 196, 13-16 (2007), 1851-1863). The second part of this work is concerned with a new a-priori error analysis of the hp-version interior penalty DG method, when the error is measured in terms of both the energy-norm and L2-norm, as well certain linear functionals of the solution, for elemental polynomial degrees $p\ge 2$. Also, provided that the solution is piecewise analytic in an open neighbourhood of each element, exponential convergence is also proven for the p-version of the DG method. The sharpness of the theoretical developments is illustrated by numerical experiments.
Resumo:
"These studies were conducted by the General Electric Company, Reentry Systems Department, for the Stability and Control Section of the Flight Dynamics Laboratory of the Air Force Research and Technology Division."
Resumo:
Este proyecto de investigación construye y evalúa la asignación de activos para el portafolio de Pensión Obligatoria de Retiro Programado, el cual atiende los retiros a los que un pensionado tiene derecho a través de su mesada pensional, utilizando el modelo de Frontera Eficiente de Markowitz, en combinación con la teoría de Momentum -- Para la ejecución del modelo se determinaron los activos de inversión admisibles en el Régimen de Inversiones -- Posteriormente, se construyen las matrices de rentabilidades, de restricciones, de varianzas y covarianzas, las cuales constituyen los insumos para ejecutar el modelo de optimización de portafolios de Markowitz -- A continuación, se realiza la selección de los portafolios obtenidos, teniendo en cuenta el nivel de volatilidad que el portafolio de Obligatorias Retiro Programado debe presentar; lo anterior, con el fin de cumplir con el objetivo de preservación del capital en la cuenta individual del pensionado, de manera que se pueda atender, de acuerdo a su esperanza de vida y la de sus beneficiarios, el pago de las mesadas pensionales que le correspondan -- El resultado obtenido corresponde a una asignación, en gran parte, en activos de Renta Fija expedidos por el Gobierno Nacional (TES), tanto en tasa fija como en tasa indexada a la UVR -- Adicionalmente, el modelo de optimización sugiere participaciones en activos de renta variable y, particularmente, no asigna recursos representativos en títulos de deuda privada indexados al IPC -- Esta investigación puede ser útil al momento de diseñar un portafolio base para Obligatorias Retiro Programado que, bajo una administración pasiva, permita cumplir el objetivo de otorgar a los pensionados una mesada para satisfacer las necesidades básicas
Resumo:
We propose a novel finite element formulation that significantly reduces the number of degrees of freedom necessary to obtain reasonably accurate approximations of the low-frequency component of the deformation in boundary-value problems. In contrast to the standard Ritz–Galerkin approach, the shape functions are defined on a Lie algebra—the logarithmic space—of the deformation function. We construct a deformation function based on an interpolation of transformations at the nodes of the finite element. In the case of the geometrically exact planar Bernoulli beam element presented in this work, these transformation functions at the nodes are given as rotations. However, due to an intrinsic coupling between rotational and translational components of the deformation function, the formulation provides for a good approximation of the deflection of the beam, as well as of the resultant forces and moments. As both the translational and the rotational components of the deformation function are defined on the logarithmic space, we propose to refer to the novel approach as the “Logarithmic finite element method”, or “LogFE” method.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Matemática na especialidade de Equações Diferenciais, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
n this paper we make an exhaustive study of the fourth order linear operator u((4)) + M u coupled with the clamped beam conditions u(0) = u(1) = u'(0) = u'(1) = 0. We obtain the exact values on the real parameter M for which this operator satisfies an anti-maximum principle. Such a property is equivalent to the fact that the related Green's function is nonnegative in [0, 1] x [0, 1]. When M < 0 we obtain the best estimate by means of the spectral theory and for M > 0 we attain the optimal value by studying the oscillation properties of the solutions of the homogeneous equation u((4)) + M u = 0. By using the method of lower and upper solutions we deduce the existence of solutions for nonlinear problems coupled with this boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with the use of the conjugate gradient method of function estimation for the simultaneous identification of two unknown boundary heat fluxes in parallel plate channels. The fluid flow is assumed to be laminar and hydrodynamically developed. Temperature measurements taken inside the channel are used in the inverse analysis. The accuracy of the present solution approach is examined by using simulated measurements containing random errors, for strict cases involving functional forms with discontinuities and sharp-corners for the unknown functions. Three different types of inverse problems are addressed in the paper, involving the estimation of: (i) Spatially dependent heat fluxes; (ii) Time-dependent heat fluxes; and (iii) Time and spatially dependent heat fluxes.
Resumo:
The method of approximate approximations, introduced by Maz'ya [1], can also be used for the numerical solution of boundary integral equations. In this case, the matrix of the resulting algebraic system to compute an approximate source density depends only on the position of a finite number of boundary points and on the direction of the normal vector in these points (Boundary Point Method). We investigate this approach for the Stokes problem in the whole space and for the Stokes boundary value problem in a bounded convex domain G subset R^2, where the second part consists of three steps: In a first step the unknown potential density is replaced by a linear combination of exponentially decreasing basis functions concentrated near the boundary points. In a second step, integration over the boundary partial G is replaced by integration over the tangents at the boundary points such that even analytical expressions for the potential approximations can be obtained. In a third step, finally, the linear algebraic system is solved to determine an approximate density function and the resulting solution of the Stokes boundary value problem. Even not convergent the method leads to an efficient approximation of the form O(h^2) + epsilon, where epsilon can be chosen arbitrarily small.
Resumo:
In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
Esta tesis estudia las similitudes y diferencias entre los flujos turbulentos de pared de tipo externo e interno, en régimen incompresible, y a números de Reynolds moderada¬mente altos. Para ello consideramos tanto simulaciones numéricas como experimentos de capas límites con gradiente de presiones nulo y de flujos de canal, ambos a números de Reynolds en el rango δ+ ~ 500 - 2000. Estos flujos de cortadura son objeto de numerosas investigaciones debido a la gran importancia que tienen tanto a nivel tecnológico como a nivel de física fundamental. No obstante, todavía existen muchos interrogantes sobre aspectos básicos tales como la universalidad de los perfiles medios y de fluctuación de las velocidades o de la presión, tanto en la zona cercana a la pared como en la zona logarítmica, el escalado y el efecto del número de Reynolds, o las diferencias entre los flujos internos y externos en la zona exterior. En éste estudio hemos utilizado simulaciones numéricas ya existentes de canales y capas límites a números de Reynolds δ+ ~ 2000 y δ+ ~ 700, respectivamente. Para poder comparar ambos flujos a igual número de Reynolds hemos realizado una nueva simulación directa de capa límite en el rango δ+ ~ 1000-2000. Los resultados de la misma son presentados y analizados en detalle. Los datos sin postprocesar y las estadísticas ya postprocesadas están públicamente disponibles en nuestro sitio web.162 El análisis de las estadísticas usando un único punto confirma la existencia de perfiles logarítmicos para las fluctuaciones de la velocidad transversal w'2+ y de la presión p'2+ en ambos tipos de flujos, pero no para la velocidad normal v'2+ o la velocidad longitudinal u'2+. Para aceptar o rechazar la existencia de un rango logarítmico en u'2+ se requieren números de Reynolds más altos que los considerados en éste trabajo. Una de las conse¬cuencias más importantes de poseer tales perfiles es que el valor máximo de la intensidad, que se alcanza cerca de la pared, depende explícitamente del número de Reynolds. Esto ha sido confirmado tras analizar un gran número de datos experimentales y numéricos, cor¬roborando que el máximo de u'2+, p/2+, y w'2+ aumenta proporcionalmente con el log(δ+). Por otro lado, éste máximo es más intenso en los flujos externos que en los internos. La máxima diferencia ocurre en torno a y/δ ~ 0.3-0.5, siendo esta altura prácticamente independiente del número de Reynolds considerado. Estas diferencias se originan como consecuencia del carácter intermitente de las capas límites, que es inexistente en los flujos internos. La estructura de las fluctuaciones de velocidad y de presión, junto con la de los esfuer¬zos de Reynolds, se han investigado por medio de correlaciones espaciales tridimensionales considerando dos puntos de medida. Hemos obtenido que el tamaño de las mismas es gen¬eralmente mayor en canales que en capas límites, especialmente en el caso de la correlación longitudinal Cuu en la dirección del flujo. Para esta correlación se demuestra que las es¬tructuras débilmente correladas presentan longitudes de hasta 0(75), en el caso de capas límites, y de hasta 0(185) en el caso de canales. Estas longitudes se obtienen respecti-vamente en la zona logarítmica y en la zona exterior. Las longitudes correspondientes en la dirección transversal son significativamente menores en ambos flujos, 0(5 — 25). La organización espacial de las correlaciones es compatible con la de una pareja de rollos casi paralelos con dimensiones que escalan en unidades exteriores. Esta organización se mantiene al menos hasta y ~ 0.65, altura a la cual las capas límites comienzan a organi¬zarse en rollos transversales. Este comportamiento es sin embargo más débil en canales, pudiéndose observar parcialmente a partir de y ~ 0.85. Para estudiar si estas estructuras están onduladas a lo largo de la dirección transver¬sal, hemos calculado las correlaciones condicionadas a eventos intensos de la velocidad transversal w'. Estas correlaciones revelan que la ondulación de la velocidad longitudinal aumenta conforme nos alejamos de la pared, sugiriendo que las estructuras están más alineadas en la zona cercana a la pared que en la zona lejana a ella. El por qué de esta ondulación se encuentra posiblemente en la configuración a lo largo de diagonales que presenta w'. Estas estructuras no sólo están onduladas, sino que también están inclinadas respecto a la pared con ángulos que dependen de la variable considerada, de la altura, y de el contorno de correlación seleccionado. Por encima de la zona tampón e independien¬temente del número de Reynolds y tipo de flujo, Cuu presenta una inclinación máxima de unos 10°, las correlaciones Cvv y Cm son esencialmente verticales, y Cww está inclinada a unos 35°. Summary This thesis studies the similitudes and differences between external and internal in¬compressible wall-bounded turbulent flows at moderately-high Reynolds numbers. We consider numerical and experimental zero-pressure-gradient boundary layers and chan¬nels in the range of δ+ ~ 500 — 2000. These shear flows are subjects of intensive research because of their technological importance and fundamental physical interest. However, there are still open questions regarding basic aspects such as the universality of the mean and fluctuating velocity and pressure profiles at the near-wall and logarithmic regions, their scaling and the effect of the Reynolds numbers, or the differences between internal and external flows at the outer layer, to name but a few. For this study, we made use of available direct numerical simulations of channel and boundary layers reaching δ+ ~ 2000 and δ+ ~ 700, respectively. To fill the gap in the Reynolds number, a new boundary layer simulation in the range δ+ ~ 1000-2000 is presented and discussed. The original raw data and the post-processed statistics are publicly available on our website.162 The analysis of the one-point statistic confirms the existence of logarithmic profiles for the spanwise w'2+ and pressure p'2+ fluctuations for both type of flows, but not for the wall-normal v'2+ or the streamwise u'2+ velocities. To accept or reject the existence of a logarithmic range in u'2+ requires higher Reynolds numbers than the ones considered in this work. An important consequence of having such profiles is that the maximum value of the intensities, reached near the wall, depends on the Reynolds number. This was confirmed after surveying a wide number of experimental and numerical datasets, corrob¬orating that the maximum of ul2+, p'2+, and w'2+ increases proportionally to log(δ+). On the other hand, that maximum is more intense in external flows than in internal ones, differing the most around y/δ ~ 0.3-0.5, and essentially independent of the Reynolds number. We discuss that those differences are originated as a consequence of the inter¬mittent character of boundary layers that is absent in internal flows. The structure of the velocity and pressure fluctuations, together with those of the Reynolds shear stress, were investigated using three-dimensional two-point spatial correlations. We find that the correlations extend over longer distances in channels than in boundary layers, especially in the case of the streamwise correlation Cuu in the flow direc-tion. For weakly correlated structures, the maximum streamwise length of Cuu is O(78) for boundary layers and O(188) for channels, attained at the logarithmic and outer regions respectively. The corresponding lengths for the transverse velocities and for the pressure are shorter, 0(8 — 28), and of the same order for both flows. The spatial organization of the velocity correlations is shown to be consistent with a pair of quasi-streamwise rollers that scales in outer units. That organization is observed until y ~ 0.68, from which boundary layers start to organize into spanwise rollers. This effect is weaker in channels, and it appears at y ~ 0.88. We present correlations conditioned to intense events of the transversal velocity, w', to study if these structures meander along the spanwise direction. The results indicate that the streamwise velocity streaks increase their meandering proportionally to the distance to the wall, suggesting that the structures are more aligned close to the wall than far from it. The reason behind this meandering is probably due to the characteristic organization along diagonals of w'. These structures not only meander along the spanwise direction, but they are also inclined to the wall at angles that depend on the distance from the wall, on the variable being considered, and on the correlation level used to define them. Above the buffer layer and independent of the Reynolds numbers and type of flow, the maximum inclination of Cuu is about 10°, Cvv and Cpp are roughly vertical, and Cww is inclined by 35°.
Resumo:
An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application of approximation enables us to relate these problems to a problem of optimal program control, described by a system of ordinary differential equations, with a scalar pay-off function. It is found that the result of this problem is not changed, if the players use positional or program strategies. For the considered differential game, it is interesting that the ε-Slater saddle points are not equivalent and there exist two ε-Slater saddle points for which the values of all components of the vector pay-off function at one of them are greater than the respective components of the other ε-saddle point.
Resumo:
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field phi(c), and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schrodinger field representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle point for fixed boundary fields, which is the classical field phi(c), a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
Resumo:
In the present paper the dynamic solutions of two non-steady seepage problems are discussed. It is shown that the acceleration term in the equation of motion is important for a correct qualitative description of the flow.
Resumo:
BACKGROUND Measurement of HbA1c is the most important parameter to assess glycemic control in diabetic patients. Different point-of-care devices for HbA1c are available. The aim of this study was to evaluate two point-of-care testing (POCT) analyzers (DCA Vantage from Siemens and Afinion from Axis-Shield). We studied the bias and precision as well as interference from carbamylated hemoglobin. METHODS Bias of the POCT analyzers was obtained by measuring 53 blood samples from diabetic patients with a wide range of HbA1c, 4%-14% (20-130 mmol/mol), and comparing the results with those obtained by the laboratory method: HPLC HA 8160 Menarini. Precision was performed by 20 successive determinations of two samples with low 4.2% (22 mmol/mol) and high 9.5% (80 mmol/mol) HbA1c values. The possible interference from carbamylated hemoglobin was studied using 25 samples from patients with chronic renal failure. RESULTS The means of the differences between measurements performed by each POCT analyzer and the laboratory method (95% confidence interval) were: 0.28% (p<0.005) (0.10-0.44) for DCA and 0.27% (p<0.001) (0.19-0.35) for Afinion. Correlation coefficients were: r=0.973 for DCA, and r=0.991 for Afinion. The mean bias observed by using samples from chronic renal failure patients were 0.2 (range -0.4, 0.4) for DCA and 0.2 (-0.2, 0.5) for Afinion. Imprecision results were: CV=3.1% (high HbA1c) and 2.97% (low HbA1c) for DCA, CV=1.95% (high HbA1c) and 2.66% (low HbA1c) for Afinion. CONCLUSIONS Both POCT analyzers for HbA1c show good correlation with the laboratory method and acceptable precision.