990 resultados para Transporte de gases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work activated dolomite adsorption was investigated for removal of acidic gaseous pollutants. Charring was found to be an effective method for the activation of dolomite. This thermal processing resulted in partial decomposition, yielding a calcite and magnesium oxide structure. Adsorbents were produced over a range of char temperatures (750, 800 and 850 °C) and char times (1–8 h). The surface properties and the adsorption capability of raw and thermally treated dolomite sorbents were investigated using porosimetry, SEM and XRD. The sorbates individually investigated were CO2 and NO2. Volumetric equilibrium isotherm determinations were produced in order to quantify sorbate capacity on the various sorbents. The equilibrium data were successfully described using the Freundlich isotherm model. Despite relatively low surface area characteristics of the activated dolomite, there was a high capacity for the acidic gas sorbates investigated, showing a maximum of 12.6 mmol/g (554 mg/g) for CO2 adsorption and 9.93 mmol/g (457 mg/g) for NO2 adsorption. Potentially the most cost effective result from the work concerns the adsorptive capacity for the naturally occurring material, which gave a capacity of 9.71 mmol/g (427 mg/g) for CO2 adsorption and 4.18 mmol/g (193 mg/g) for NO2 adsorption. These results indicate that dolomitic sorbents are potentially cost effective materials for acidic gases adsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma-ray positron annihilation spectra of the noble gases are simulated using computational chemistry tools for the bound electron wavefunctions and plane-wave approximation for the low-energy positron. The present annihilation line shapes, i.e. the full width at half maximum, Delta epsilon, of the gamma-ray annihilation spectra for He and Ar (valence) agree well with available independent atomic calculations using a different algorithm. For other noble gases they achieve moderate agreement with the experimental measurements. It is found that the contributions of various atomic electron shells to the spectra depend significantly on their principal quantum number n and orbital angular momentum quantum number l. The present study further reveals that the outermost ns electrons of the noble gases exhibit spectral line shapes in close agreement with those measured, indicating (as expected) that the measurements are not due to a simple sum over the momentum densities for all atomic electrons. The robust nature of the present approach makes it possible for us to proceed to more complex molecular systems using the tools of modern computational chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We solve the Gross-Pitaevskii equation to study energy transfer from an oscillating

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A forthcoming challenge in ultracold lattice gases is the simulation of quantum magnetism. That involves both the preparation of the lattice atomic gas in the desired spin state and the probing of the state. Here we demonstrate how a probing scheme based on atom-light interfaces gives access to the order parameters of nontrivial quantum magnetic phases, allowing us to characterize univocally strongly correlated magnetic systems produced in ultracold gases. This method, which is also nondemolishing, yields spatially resolved spin correlations and can be applied to bosons or fermions. As a proof of principle, we apply this method to detect the complete phase diagram displayed by a chain of (rotationally invariant) spin-1 bosons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the ground-state phase diagram of ultracold dipolar gases in highly anisotropic traps. Starting from a one-dimensional geometry, by ramping down the transverse confinement along one direction, the gas reaches various planar distributions of dipoles. At large linear densities, when the dipolar gas exhibits a crystal-like phase, critical values of the transverse frequency exist below which the configuration exhibits transverse patterns. These critical values are found by means of a classical theory, and are in full agreement with classical Monte Carlo simulations. The study of the quantum system is performed numerically with Monte Carlo techniques and shows that the quantum fluctuations smoothen the transition and make it completely disappear in a gas phase. These predictions could be experimentally tested and would allow one to reveal the effect of zero-point motion on self-organized mesoscopic structures of matter waves, such as the transverse pattern of the zigzag chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probing non trivial magnetic ordering in quantum magnets realized with ultracold lattice gases demands detection methods with some spatial resolution built on it. Here we demonstrate that the Faraday matter-light interface provides an experimentally feasible tool to distinguish indubitably different quantum phases of a given many-body system in a non-demolishing way. We illustrate our approach by focussing on the Heisenberg chain for spin-1 bosons in the presence of a SU(2) symmetry breaking field. We explain how using the light signal obtained via homodyne detection one can reconstruct the phase diagram of the model. Further we show that the very same technique that provides a direct experimentally measurable signal of different order parameters can be extended to detect also the presence of multipartite entanglement in such systems.