957 resultados para Traffic Speed Change.
Resumo:
The emergence of Wavelength Division Multiplexing (WDM) technology provides the capability for increasing the bandwidth of Synchronous Optical Network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add-drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom in the traffic and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently.
Resumo:
To commemorate the 10th anniversary of the Nebraska Rural Poll, rural Nebraskans were asked about changes they may have experienced during the past ten years. Where have they lived during the past decade? In what types of business activities have they been involved? Have they received any education or training during that time period? What has been their experience with the Internet? This report details 2,851 responses to the 2005 Nebraska Rural Poll, the tenth annual effort to understand rural Nebraskans’ perceptions. Respondents were asked a series of questions about changes they have experienced during the past ten years. For all questions, comparisons are made among different respondent subgroups, that is, comparisons by age, occupation, region, etc. Based on these analyses, some key findings emerged: One quarter of rural Nebraskans have lived somewhere other than their current community during the past ten years. Of those who have lived elsewhere, they have moved their primary residence an average of 2.2 times. Younger rural Nebraskans are more likely than older residents to have lived elsewhere during the past decade. Sixty-six percent of persons between the ages of 19 and 29 have lived in a different location, compared to only 12 percent of persons age 65 and older. Many rural Nebraskans who have lived in a different community during the past ten years have lived in another state. Forty-one percent of persons who have lived elsewhere during the past decade have lived in a different state. Forty-five percent have lived in a larger community (18% have lived in either Omaha or Lincoln and 27% have lived in or near a Nebraska community larger than their current one - other than Lincoln or Omaha). Thirty-six percent have lived in or near a Nebraska community smaller than their current one. Twenty percent of rural Nebraskans currently own a business. Thirteen percent started operating a business during the past ten years, 10 percent closed or stopped operating a business during this time period and four percent tried unsuccessfully to start a business. Persons living in or near the smallest communities are more likely than persons living in or near larger communities to currently own a business. Twenty-nine percent of persons living in or near communities with less than 500 people currently own a business, compared to 15 percent of persons living in or near communities with at least 10,000 persons. In general, rural Nebraskans have favorable opinions about self-employment but they also recognize the hardships and risks involved with this type of employment. Sixtyone percent agree that self-employment is desirable because they can be their own boss. Forty-four percent agree that self-employment provides a better quality of life than being an employee. However, 74 percent agree that self-employed individuals work longer hours than traditional employees and 70 percent agree that the cost of health insurance makes self-employment unappealing. Younger persons are more likely than older persons to agree that the cost of health insurance makes self-employment unappealing. Eighty percent of persons age 19 to 29 agree with that statement, compared to 55 percent of persons age 65 and older. One-half of rural Nebraskans have participated in formal education courses, workshops or other training activities during the past ten years. Sixty-nine percent of rural Nebraskans have Internet access either at home or at work. Sixty-six percent have acquired Internet access either at home or at work during the past ten years. An additional three percent had acquired access more than ten years ago. Persons with higher levels of income are more likely than persons with lower incomes to have acquired Internet access. Sixty-six percent of persons with household incomes of $60,000 or more have acquired Internet access at both home and work during the past ten years, compared to only 11 percent of persons with household incomes less than $20,000. Information searches and email are the most important reasons for having an Internet connection. Eighty-nine percent of rural Nebraskans with access to the Internet at either home or work say that information searches are an important or very important reason for having an Internet connection. Eighty-three percent say email is an important reason. In general, rural Nebraskans say their satisfaction with various features of their Internet connection has increased during the past ten years. Fifty-five percent of rural Nebraskans with an Internet connection at home say their satisfaction with the availability of service has increased during the past ten years and 50 percent report an increase in their satisfaction with the speed of their connection. Persons living in or near the larger communities are more likely than persons living in or near the smaller communities to say their satisfaction with the speed of their Internet connection has increased during the past ten years. Fifty-four percent of persons living in or near communities with populations of 5,000 or more say their satisfaction with the speed of their connection has increased over the past decade, compared to 43 percent of persons living in or near communities with less than 1,000 people.
Resumo:
The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. The memory subsystem accounts for a significant cost and power budget of a computer system. Current DRAM-based main memory systems are starting to hit the power and cost limit. To resolve this issue the industry is improving existing technologies such as Flash and exploring new ones. Among those new technologies is the Phase Change Memory (PCM), which overcomes some of the shortcomings of the Flash such as durability and scalability. This alternative non-volatile memory technology, which uses resistance contrast in phase-change materials, offers more density relative to DRAM, and can help to increase main memory capacity of future systems while remaining within the cost and power constraints. Chalcogenide materials can suitably be exploited for manufacturing phase-change memory devices. Charge transport in amorphous chalcogenide-GST used for memory devices is modeled using two contributions: hopping of trapped electrons and motion of band electrons in extended states. Crystalline GST exhibits an almost Ohmic I(V) curve. In contrast amorphous GST shows a high resistance at low biases while, above a threshold voltage, a transition takes place from a highly resistive to a conductive state, characterized by a negative differential-resistance behavior. A clear and complete understanding of the threshold behavior of the amorphous phase is fundamental for exploiting such materials in the fabrication of innovative nonvolatile memories. The type of feedback that produces the snapback phenomenon is described as a filamentation in energy that is controlled by electron–electron interactions between trapped electrons and band electrons. The model thus derived is implemented within a state-of-the-art simulator. An analytical version of the model is also derived and is useful for discussing the snapback behavior and the scaling properties of the device.
Resumo:
Crop water requirements are important elements for food production, especially in arid and semiarid regions. These regions are experience increasing population growth and less water for agriculture, which amplifies the need for more efficient irrigation. Improved water use efficiency is needed to produce more food while conserving water as a limited natural resource. Evaporation (E) from bare soil and Transpiration (T) from plants is considered a critical part of the global water cycle and, in recent decades, climate change could lead to increased E and T. Because energy is required to break hydrogen bonds and vaporize water, water and energy balances are closely connected. The soil water balance is also linked with water vapour losses to evapotranspiration (ET) that are dependent mainly on energy balance at the Earth’s surface. This work addresses the role of evapotranspiration for water use efficiency by developing a mathematical model that improves the accuracy of crop evapotranspiration calculation; accounting for the effects of weather conditions, e.g., wind speed and humidity, on crop coefficients, which relates crop evapotranspiration to reference evapotranspiration. The ability to partition ET into Evaporation and Transpiration components will help irrigation managers to find ways to improve water use efficiency by decreasing the ratio of evaporation to transpiration. The developed crop coefficient model will improve both irrigation scheduling and water resources planning in response to future climate change, which can improve world food production and water use efficiency in agriculture.
Resumo:
Due to its practical importance and inherent complexity, the optimisation of distribution networks for supplying drinking water has been the subject of extensive study for the past 30 years. The optimization is governed by sizing the pipes in the water distribution network (WDN) and / or optimises specific parts of the network such as pumps, tanks etc. or try to analyse and optimise the reliability of a WDN. In this thesis, the author has analysed two different WDNs (Anytown City and Cabrera city networks), trying to solve and optimise a multi-objective optimisation problem (MOOP). The main two objectives in both cases were the minimisation of Energy Cost (€) or Energy consumption (kWh), along with the total Number of pump switches (TNps) during a day. For this purpose, a decision support system generator for Multi-objective optimisation used. Its name is GANetXL and has been developed by the Center of Water System in the University of Exeter. GANetXL, works by calling the EPANET hydraulic solver, each time a hydraulic analysis has been fulfilled. The main algorithm used, was a second-generation algorithm for multi-objective optimisation called NSGA_II that gave us the Pareto fronts of each configuration. The first experiment that has been carried out was the network of Anytown city. It is a big network with a pump station of four fixed speed parallel pumps that are boosting the water dynamics. The main intervention was to change these pumps to new Variable speed driven pumps (VSDPs), by installing inverters capable to diverse their velocity during the day. Hence, it’s been achieved great Energy and cost savings along with minimisation in the number of pump switches. The results of the research are thoroughly illustrated in chapter 7, with comments and a variety of graphs and different configurations. The second experiment was about the network of Cabrera city. The smaller WDN had a unique FS pump in the system. The problem was the same as far as the optimisation process was concerned, thus, the minimisation of the energy consumption and in parallel the minimisation of TNps. The same optimisation tool has been used (GANetXL).The main scope was to carry out several and different experiments regarding a vast variety of configurations, using different pump (but this time keeping the FS mode), different tank levels, different pipe diameters and different emitters coefficient. All these different modes came up with a large number of results that were compared in the chapter 8. Concluding, it should be said that the optimisation of WDNs is a very interested field that has a vast space of options to deal with. This includes a large number of algorithms to choose from, different techniques and configurations to be made and different support system generators. The researcher has to be ready to “roam” between these choices, till a satisfactory result will convince him/her that has reached a good optimisation point.
Resumo:
Humankind today is challenged by numerous threats brought about by the speed and scope of global change dynamics. A concerted and informed approach to solutions is needed to face the severity and magnitude of current development problems. Generating shared knowledge is a key to addressing global challenges. This requires developing the ability to cross multiple borders wherever radically different understandings of issues such as health and environmental sanitation, governance and conflict, livelihood options and globalisation, and natural resources and development exist. Global Change and Sustainable Development presents 36 peer-reviewed articles written by interdisciplinary teams of authors who reflected on results of development-oriented research conducted from 2001 to 2008. Scientific activities were – and continue to be – carried out in partnerships involving people and institutions in the global North, South and East, guided by principles of sustainability. The articles seek to inform solutions for mitigating, or adapting to, the negative impacts of global dynamics in the social, political, ecological, institutional and economic spheres.
Resumo:
Like other mountain areas in the world, the Hindu Kush-Himalayan (HKH) region is particularly vulnerable to climate change. Ongoing climate change processes are projected to have a high impact on the HKH region, and accelerated warming has been reported in the Himalayas. These climate change impacts will be superimposed on a variety of other environmental and social stresses, adding to the complexity of the issues. The sustainable use of natural resources is crucial to the long-term stability of the fragile mountain ecosystems in the HKH and to sustain the socio-ecological resilience that forms the basis of sustainable livelihoods in the region. In order to be prepared for these challenges, it is important to take stock of previous research. The ‘People and Resource Dynamics Project’ (PARDYP), implemented by International Centre for Integrated Mountain Development (ICIMOD), provides a variety of participatory options for sustainable land management in the HKH region. The PARDYD project was a research for development project that operated in five middle mountain watersheds across the HKH – two in Nepal and one each in China, India, and Pakistan. The project ran from 1996 to 2006 and focused on addressing the marginalisation of mountain farmers, the use and availability of water, issues relating to land and forest degradation and declining soil fertility, the speed of regeneration of degraded land, and the ability of the natural environment to support the growing needs of the region’s increasing population. A key learning from the project was that the opinion of land users is crucial to the acceptance (and, therefore, successful application) of new technologies and approaches. A major challenge at the end of every project is to promote knowledge sharing and encourage the cross-fertilization of ideas (e.g., in the case of PARDYP, with other middle mountain inhabitants and practitioners in the region) and to share lessons learned with a wider audience. This paper will highlight how the PARDYP findings, including ways of addressing soil fertility and water scarcity, have been mainstreamed in the HKH region through capacity building (international, regional, and national training courses), networking, and the provision of backstopping services. In addition, in view of the challenges in watershed management in the HKH connected to environmental change, the lessons learned from the PARDYP are now being used by ICMOD to define and package climate change proof technology options to address climate change adaptation.
Resumo:
Studies are suggesting that hurricane hazard patterns (e.g. intensity and frequency) may change as a consequence of the changing global climate. As hurricane patterns change, it can be expected that hurricane damage risks and costs may change as a result. This indicates the necessity to develop hurricane risk assessment models that are capable of accounting for changing hurricane hazard patterns, and develop hurricane mitigation and climatic adaptation strategies. This thesis proposes a comprehensive hurricane risk assessment and mitigation strategies that account for a changing global climate and that has the ability of being adapted to various types of infrastructure including residential buildings and power distribution poles. The framework includes hurricane wind field models, hurricane surge height models and hurricane vulnerability models to estimate damage risks due to hurricane wind speed, hurricane frequency, and hurricane-induced storm surge and accounts for the timedependant properties of these parameters as a result of climate change. The research then implements median insured house values, discount rates, housing inventory, etc. to estimate hurricane damage costs to residential construction. The framework was also adapted to timber distribution poles to assess the impacts climate change may have on timber distribution pole failure. This research finds that climate change may have a significant impact on the hurricane damage risks and damage costs of residential construction and timber distribution poles. In an effort to reduce damage costs, this research develops mitigation/adaptation strategies for residential construction and timber distribution poles. The costeffectiveness of these adaptation/mitigation strategies are evaluated through the use of a Life-Cycle Cost (LCC) analysis. In addition, a scenario-based analysis of mitigation strategies for timber distribution poles is included. For both residential construction and timber distribution poles, adaptation/mitigation measures were found to reduce damage costs. Finally, the research develops the Coastal Community Social Vulnerability Index (CCSVI) to include the social vulnerability of a region to hurricane hazards within this hurricane risk assessment. This index quantifies the social vulnerability of a region, by combining various social characteristics of a region with time-dependant parameters of hurricanes (i.e. hurricane wind and hurricane-induced storm surge). Climate change was found to have an impact on the CCSVI (i.e. climate change may have an impact on the social vulnerability of hurricane-prone regions).
Resumo:
By means of fixed-links modeling, the present study identified different processes of visual short-term memory (VSTM) functioning and investigated how these processes are related to intelligence. We conducted an experiment where the participants were presented with a color change detection task. Task complexity was manipulated through varying the number of presented stimuli (set size). We collected hit rate and reaction time (RT) as indicators for the amount of information retained in VSTM and speed of VSTM scanning, respectively. Due to the impurity of these measures, however, the variability in hit rate and RT was assumed to consist not only of genuine variance due to individual differences in VSTM retention and VSTM scanning but also of other, non-experimental portions of variance. Therefore, we identified two qualitatively different types of components for both hit rate and RT: (1) non-experimental components representing processes that remained constant irrespective of set size and (2) experimental components reflecting processes that increased as a function of set size. For RT, intelligence was negatively associated with the non-experimental components, but was unrelated to the experimental components assumed to represent variability in VSTM scanning speed. This finding indicates that individual differences in basic processing speed, rather than in speed of VSTM scanning, differentiates between high- and low-intelligent individuals. For hit rate, the experimental component constituting individual differences in VSTM retention was positively related to intelligence. The non-experimental components of hit rate, representing variability in basal processes, however, were not associated with intelligence. By decomposing VSTM functioning into non-experimental and experimental components, significant associations with intelligence were revealed that otherwise might have been obscured.
Resumo:
Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.
Resumo:
Strengthening car drivers’ intention to prevent road-traffic noise is a first step toward noise abatement through voluntary change of behavior. We analyzed predictors of this intention based on the norm activation model (i.e., personal norm, problem awareness, awareness of consequences, social norm, and value orientations). Moreover, we studied the effects of noise exposure, noise sensitivity, and noise annoyance on problem awareness. Data came from 1,002 car drivers who participated in a two-wave longitudinal survey over 4 months. Personal norm had a large prospective effect on intention, even when the previous level of intention was controlled for, and mediated the effect of all other variables on intention. Almost 60% of variance in personal norm was explained by problem awareness, social norm, and biospheric value orientation. The effects of noise sensitivity and noise exposure on problem awareness were small and mediated by noise annoyance. We propose four communication strategies for strengthening the intention to prevent road-traffic noise in car drivers.
Resumo:
The north-eastern escarpment of Madagascar harbours the island’s last remaining large-scale humid forest massifs surrounded by a small-scale agricultural mosaic. There is high deforestation, commonly thought to be caused by shifting cultivation practiced by local land users to produce upland rice. However, little is known about the dynamics between forest and shifting cultivation systems at a regional level. Our study presents a first attempt to quantify changes in the extent of forest and different agricultural land cover classes, and to identify the main dynamics of land cover change for two intervals, 1995–2005 and 2005–2011. Over the 16-year study period, the speed of forest loss increased, the total area of upland rice production remained almost stable, and the area of irrigated rice fields slightly increased. While our findings seem to confirm a general trend of land use intensification, deforestation through shifting cultivation is still on the rise. Deforestation mostly affects the small forest fragments interspersed in the agricultural mosaic and is slowly leading to a homogenization of the landscape. These findings have important implications for future interventions to slow forest loss in the region, as the processes of agricultural expansion through shifting cultivation versus intensified land use cannot per se be considered mutually exclusive.
Resumo:
Introduction: In team sports the ability to use peripheral vision is essential to track a number of players and the ball. By using eye-tracking devices it was found that players either use fixations and saccades to process information on the pitch or use smooth pursuit eye movements (SPEM) to keep track of single objects (Schütz, Braun, & Gegenfurtner, 2011). However, it is assumed that peripheral vision can be used best when the gaze is stable while it is unknown whether motion changes can be equally well detected when SPEM are used especially because contrast sensitivity is reduced during SPEM (Schütz, Delipetkose, Braun, Kerzel, & Gegenfurtner, 2007). Therefore, peripheral motion change detection will be examined by contrasting a fixation condition with a SPEM condition. Methods: 13 participants (7 male, 6 female) were presented with a visual display consisting of 15 white and 1 red square. Participants were instructed to follow the red square with their eyes and press a button as soon as a white square begins to move. White square movements occurred either when the red square was still (fixation condition) or moving in a circular manner with 6 °/s (pursuit condition). The to-be-detected white square movements varied in eccentricity (4 °, 8 °, 16 °) and speed (1 °/s, 2 °/s, 4 °/s) while movement time of white squares was constant at 500 ms. 180 events should be detected in total. A Vicon-integrated eye-tracking system and a button press (1000 Hz) was used to control for eye-movements and measure detection rates and response times. Response times (ms) and missed detections (%) were measured as dependent variables and analysed with a 2 (manipulation) x 3 (eccentricity) x 3 (speed) ANOVA with repeated measures on all factors. Results: Significant response time effects were found for manipulation, F(1,12) = 224.31, p < .01, ηp2 = .95, eccentricity, F(2,24) = 56.43; p < .01, ηp2 = .83, and the interaction between the two factors, F(2,24) = 64.43; p < .01, ηp2 = .84. Response times increased as a function of eccentricity for SPEM only and were overall higher than in the fixation condition. Results further showed missed events effects for manipulation, F(1,12) = 37.14; p < .01, ηp2 = .76, eccentricity, F(2,24) = 44.90; p < .01, ηp2 = .79, the interaction between the two factors, F(2,24) = 39.52; p < .01, ηp2 = .77 and the three-way interaction manipulation x eccentricity x speed, F(2,24) = 3.01; p = .03, ηp2 = .20. While less than 2% of events were missed on average in the fixation condition as well as at 4° and 8° eccentricity in the SPEM condition, missed events increased for SPEM at 16 ° eccentricity with significantly more missed events in the 4 °/s speed condition (1 °/s: M = 34.69, SD = 20.52; 2 °/s: M = 33.34, SD = 19.40; 4 °/s: M = 39.67, SD = 19.40). Discussion: It could be shown that using SPEM impairs the ability to detect peripheral motion changes at the far periphery and that fixations not only help to detect these motion changes but also to respond faster. Due to high temporal constraints especially in team sports like soccer or basketball, fast reaction are necessary for successful anticipation and decision making. Thus, it is advised to anchor gaze at a specific location if peripheral changes (e.g. movements of other players) that require a motor response have to be detected. In contrast, SPEM should only be used if a single object, like the ball in cricket or baseball, is necessary for a successful motor response. References: Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: A selective review. Journal of Vision, 11, 1-30. Schütz, A. C., Delipetkose, E., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2007). Temporal contrast sensitivity during smooth pursuit eye movements. Journal of Vision, 7, 1-15.
Resumo:
Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m2 after trawling and integrating between 30,000 and 175,000 m2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems.