951 resultados para Topological Strings
Resumo:
This paper deals with the relationship between the periodic orbits of continuous maps on graphs and the topological entropy of the map. We show that the topological entropy of a graph map can be approximated by the entropy of its periodic orbits
Resumo:
Es mostra que, gracies a una extensió en la definició dels Índexs Moleculars Topològics, s'arriba a la formulació d'índexs relacionats amb la teoria de la Semblança Molecular Quàntica. Es posa de manifest la connexió entre les dues metodologies: es revela que un marc de treball teòric sòlidament fonamentat sobre la teoria de la Mecànica Quàntica es pot connectar amb una de les tècniques més antigues relacionades amb els estudis de QSPR. Es mostren els resultats per a dos casos d'exemple d'aplicació d'ambdues metodologies
Resumo:
This paper reports three experiments that examine the role of similarity processing in McGeorge and Burton's (1990) incidental learning task. In the experiments subjects performed a distractor task involving four-digit number strings, all of which conformed to a simple hidden rule. They were then given a forced-choice memory test in which they were presented with pairs of strings and were led to believe that one string of each pair had appeared in the prior learning phase. Although this was not the case, one string of each pair did conform to the hidden rule. Experiment 1 showed that, as in the McGeorge and Burton study, subjects were significantly more likely to select test strings that conformed to the hidden rule. However, additional analyses suggested that rather than having implicitly abstracted the rule, subjects may have been selecting strings that were in some way similar to those seen during the learning phase. Experiments 2 and 3 were designed to try to separate out effects due to similarity from those due to implicit rule abstraction. It was found that the results were more consistent with a similarity-based model than implicit rule abstraction per se.
Resumo:
A new silver-antimony sulphide, [C6H20N4][Ag5Sb3S8], has been synthesised solvothermally in the presence of triethylenetetramine and characterised by single-crystal X-ray diffraction, thermogravimetry and elemental analysis. The compound crystallises in the space group P2(1)/m (a = 6.2778(7), b = 15.8175(16) and c = 12.4617(15) angstrom and beta = 104.561(5)degrees) and adopts a structure in which honeycomb-like sheets of fused six-membered silver-antimony-sulphide rings are linked through Ag-S bonds to form double layers. The idealised structure can be considered to be derived from that of antifluorite and represents a second structure type for the [Ag5Sb3S8](2-) double layer. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Successful classification, information retrieval and image analysis tools are intimately related with the quality of the features employed in the process. Pixel intensities, color, texture and shape are, generally, the basis from which most of the features are Computed and used in such fields. This papers presents a novel shape-based feature extraction approach where an image is decomposed into multiple contours, and further characterized by Fourier descriptors. Unlike traditional approaches we make use of topological knowledge to generate well-defined closed contours, which are efficient signatures for image retrieval. The method has been evaluated in the CBIR context and image analysis. The results have shown that the multi-contour decomposition, as opposed to a single shape information, introduced a significant improvement in the discrimination power. (c) 2008 Elsevier B.V. All rights reserved,
Resumo:
In this paper we present some formulae for topological invariants of projective complete intersection curves with isolated singularities in terms of the Milnor number, the Euler characteristic and the topological genus. We also present some conditions, involving the Milnor number and the degree of the curve, for the irreducibility of complete intersection curves.
Resumo:
A novel mathematical framework inspired on Morse Theory for topological triangle characterization in 2D meshes is introduced that is useful for applications involving the creation of mesh models of objects whose geometry is not known a priori. The framework guarantees a precise control of topological changes introduced as a result of triangle insertion/removal operations and enables the definition of intuitive high-level operators for managing the mesh while keeping its topological integrity. An application is described in the implementation of an innovative approach for the detection of 2D objects from images that integrates the topological control enabled by geometric modeling with traditional image processing techniques. (C) 2008 Published by Elsevier B.V.
Resumo:
We consider pulsating strings in Lunin-Maldacena backgrounds, specifically in deformed Minkowski spacetime and deformed AdS(5) x S(5). We find the relation between the energy and the oscillation number of the pulsating string when the deformation is small. Since the oscillation number is an adiabatic invariant it can be used to explore the regime of highly excited string states. We then quantize the string and look for such a sector. For the deformed Minkowski background we find a precise match with the classical results if the oscillation number is quantized as an even number. For the deformed AdS(5) x S(5) we find a contribution which depends on the deformation parameter.
Resumo:
Topological interactions will be generated in theories with compact extra dimensions where fermionic chiral zero modes have different localizations. This is the case in many warped extra dimension models where the right-handed top quark is typically localized away from the left-handed one. Using deconstruction techniques, we study the topological interactions in these models. These interactions appear as trilinear and quadrilinear gauge boson couplings in low energy effective theories with three or more sites, as well as in the continuum limit. We derive the form of these interactions for various cases, including examples of Abelian, non-Abelian and product gauge groups of phenomenological interest. The topological interactions provide a window into the more fundamental aspects of these theories and could result in unique signatures at the Large Hadron Collider, some of which we explore.
Resumo:
The anomalous alternating magnetoresistivity in HgTe quantum wells with thicknesses of 5.8 and 8.3 nm, i.e., near the transition from the direct band spectrum to an inverted spectrum, has been revealed and analyzed. It has been shown that the revealed anomalous alternating magnetoresistivity in wells with an inverted spectrum is well described by the theory developed by S.V. Iordanskii et al. [JETP Lett. 60, 206 (1994)] and W. Knap et al. [Phys. Rev. B 53, 3912 (1996)]. A detailed comparison of the experimental data with the theory indicates the presence of only the cubic term in the spin splitting of the electronic spectrum. The applicability conditions of the mentioned theory are not satisfied in a well with a direct gap and, for this reason, such a certain conclusion is impossible. The results indicate the existence of a strong spin-orbit interaction in symmetric HgTe quantum wells near the topological transition.
Resumo:
A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.
Resumo:
In this paper, rotating strings in three directions of AdS(4) x CP(3) geometry are studied; its divergent energy limit, and conserved charges are also determined. An interpretation of these configurations as either giant magnons or spiky strings is discussed.