935 resultados para Topic Maps
Resumo:
Le mouvement de la marche est un processus essentiel de l'activité humaine et aussi le résultat de nombreuses interactions collaboratives entre les systèmes neurologiques, articulaires et musculo-squelettiques fonctionnant ensemble efficacement. Ceci explique pourquoi une analyse de la marche est aujourd'hui de plus en plus utilisée pour le diagnostic (et aussi la prévention) de différents types de maladies (neurologiques, musculaires, orthopédique, etc.). Ce rapport présente une nouvelle méthode pour visualiser rapidement les différentes parties du corps humain liées à une possible asymétrie (temporellement invariante par translation) existant dans la démarche d'un patient pour une possible utilisation clinique quotidienne. L'objectif est de fournir une méthode à la fois facile et peu dispendieuse permettant la mesure et l'affichage visuel, d'une manière intuitive et perceptive, des différentes parties asymétriques d'une démarche. La méthode proposée repose sur l'utilisation d'un capteur de profondeur peu dispendieux (la Kinect) qui est très bien adaptée pour un diagnostique rapide effectué dans de petites salles médicales car ce capteur est d'une part facile à installer et ne nécessitant aucun marqueur. L'algorithme que nous allons présenter est basé sur le fait que la marche saine possède des propriétés de symétrie (relativement à une invariance temporelle) dans le plan coronal.
Resumo:
This thesis is a study of discrete nonlinear systems represented by one dimensional mappings.As one dimensional interative maps represent Poincarre sections of higher dimensional flows,they offer a convenient means to understand the dynamical evolution of many physical systems.It highlighting the basic ideas of deterministic chaos.Qualitative and quantitative measures for the detection and characterization of chaos in nonlinear systems are discussed.Some simple mathematical models exhibiting chaos are presented.The bifurcation scenario and the possible routes to chaos are explained.It present the results of the numerical computational of the Lyapunov exponents (λ) of one dimensional maps.This thesis focuses on the results obtained by our investigations on combinations maps,scaling behaviour of the Lyapunov characteristic exponents of one dimensional maps and the nature of bifurcations in a discontinous logistic map.It gives a review of the major routes to chaos in dissipative systems,namely, Period-doubling ,Intermittency and Crises.This study gives a theoretical understanding of the route to chaos in discontinous systems.A detailed analysis of the dynamics of a discontinous logistic map is carried out, both analytically and numerically ,to understand the route it follows to chaos.The present analysis deals only with the case of the discontinuity parameter applied to the right half of the interval of mapping.A detailed analysis for the n –furcations of various periodicities can be made and a more general theory for the map with discontinuities applied at different positions can be on a similar footing
Resumo:
We establish numerically the validity of Huberman-Rudnick scaling relation for Lyapunov exponents during the period doubling route to chaos in one dimensional maps. We extend our studies to the context of a combination map. where the scaling index is found to be different.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.
Resumo:
Die Wissenschaft weist im Zuge der Entwicklung von der Industrie- zu einer Wissensgesellschaft einschneidende Veränderungen in der Wissensordnung auf, welche sich bis hin zu einem zunehmenden Verlust der wissenschaftlichen Selbststeuerungsmechanismen bemerkbar machen und einen veränderten Umgang mit dem generierten Wissensschatz erfordern. Nicht nur Änderungen in der Wissensordnung und -produktion stellen die Psychoanalyse vor neue Herausforderungen: In den letzten Jahrzehnten geriet sie als Wissenschaft und Behandlungsverfahren zunehmend in die Kritik und reagierte mit einer konstruktiven Diskussion um ein dem Forschungsgegenstand – die Untersuchung unbewusster Prozesse und Fantasien – adäquates psychoanalytisches Forschungsverständnis. Die Auseinandersetzung mit Forderungen gesellschaftlicher Geldgeber, politischer Vertreter und Interessensgruppen wie auch der wissenschaftlichen Community stellt die Psychoanalyse vor besondere Herausforderungen. Um wissenschaftsexternen wie -internen Gütekriterien zu genügen, ist häufig ein hoher personeller, materieller, finanzieller, methodischer wie organisatorischer Aufwand unabdingbar, wie das Beispiel des psychoanalytischen Forschungsinstitutes Sigmund-Freud-Institut zeigt. Der steigende Aufwand schlägt sich in einer zunehmenden Komplexität des Forschungsprozesses nieder, die unter anderem in den vielschichtigen Fragestellungen und Zielsetzungen, dem vermehrt interdisziplinären, vernetzten Charakter, dem Umgang mit dem umfangreichen, hochspezialisierten Wissen, der Methodenvielfalt, etc. begründet liegt. Um jener Komplexität des Forschungsprozesses gerecht zu werden, ist es zunehmend erforderlich, Wege des Wissensmanagement zu beschreiten. Tools wie z. B. Mapping-Verfahren stellen unterstützende Werkzeuge des Wissensmanagements dar, um den Herausforderungen des Forschungsprozesses zu begegnen. In der vorliegenden Arbeit werden zunächst die veränderten Forschungsbedingungen und ihre Auswirkungen auf die Komplexität des Forschungsprozesses - insbesondere auch des psychoanalytischen Forschungsprozesses - reflektiert. Die mit der wachsenden Komplexität einhergehenden Schwierigkeiten und Herausforderungen werden am Beispiel eines interdisziplinär ausgerichteten EU-Forschungsprojektes näher illustriert. Um dieser wachsenden Komplexität psychoanalytischer Forschung erfolgreich zu begegnen, wurden in verschiedenen Forschungsprojekten am Sigmund-Freud-Institut Wissensmanagement-Maßnahmen ergriffen. In der vorliegenden Arbeit wird daher in einem zweiten Teil zunächst auf theoretische Aspekte des Wissensmanagements eingegangen, die die Grundlage der eingesetzten Wissensmanagement-Instrumente bildeten. Dabei spielen insbesondere psychologische Aspekte des Wissensmanagements eine zentrale Rolle. Zudem werden die konkreten Wissensmanagement-Tools vorgestellt, die in den verschiedenen Forschungsprojekten zum Einsatz kamen, um der wachsenden Komplexität psychoanalytischer Forschung zu begegnen. Abschließend werden die Hauptthesen der vorliegenden Arbeit noch einmal reflektiert und die geschilderten Techniken des Wissensmanagements im Hinblick auf ihre Vor- und Nachteile kritisch diskutiert.
Resumo:
Starting with logratio biplots for compositional data, which are based on the principle of subcompositional coherence, and then adding weights, as in correspondence analysis, we rediscover Lewi's spectral map and many connections to analyses of two-way tables of non-negative data. Thanks to the weighting, the method also achieves the property of distributional equivalence
Resumo:
Self-organizing maps (Kohonen 1997) is a type of artificial neural network developed to explore patterns in high-dimensional multivariate data. The conventional version of the algorithm involves the use of Euclidean metric in the process of adaptation of the model vectors, thus rendering in theory a whole methodology incompatible with non-Euclidean geometries. In this contribution we explore the two main aspects of the problem: 1. Whether the conventional approach using Euclidean metric can shed valid results with compositional data. 2. If a modification of the conventional approach replacing vectorial sum and scalar multiplication by the canonical operators in the simplex (i.e. perturbation and powering) can converge to an adequate solution. Preliminary tests showed that both methodologies can be used on compositional data. However, the modified version of the algorithm performs poorer than the conventional version, in particular, when the data is pathological. Moreover, the conventional ap- proach converges faster to a solution, when data is \well-behaved". Key words: Self Organizing Map; Artificial Neural networks; Compositional data
Resumo:
Wikiloc es un servicio web gratuito para visualizar y compartir rutas y puntos de interés GPS. Utilizando software libre y la API de Google Maps, Wikiloc hace la función de base de datos personal de localizaciones GPS. Desde cualquier acceso a Internet un usuario de GPS puede cargar sus datos GPS y al momento visualizar la ruta y waypoints con distinta cartografía de fondo, incluidos servidores de mapas externos WMS (Web Map Service) o descargarlo a Google Earth para ver en 3D. Paralelamente se muestra el perfil de altura, distancia, desniveles acumulados y las fotos o comentarios que el usuario quiera añadir
Resumo:
In this section, you will find maps showing various important aspects of the River Tyne catchment area. All the maps are drawn based on Ordnance Survey data made available via the Digimap service. For the land cover maps of the catchment area, four variants are provided. Please note that the full details of the intext citations quoted in some of the following maps can be found in the full bibliographic listing.
Resumo:
indicative list of topic areas for professional, legal and ethical issues modules clustered into broad themes. Document is to be consulted in conjunction with other slides and notes for the module.
Resumo:
This PowerPoint outlines the main points that you need to consider when adding figures to your thesis, including resolution, file format and copyright.
Resumo:
In this theme you will work through a series of texts and activities designed to develop the essential personal, organisational, management, theoretical and research skills you need to select an appropriate topic for a Masters/PhD research project.