943 resultados para Tool wear mechanism
Resumo:
Quenched and tempered high-speed steels obtained by powder metallurgy are commonly used in automotive components, such as valve seats of combustion engines. In order to machine these components, tools with high wear resistance and appropriate cutting edge geometry are required. This work aims to investigate the influence of the edge preparation of polycrystalline cubic boron nitride (PCBN) tools on the wear behavior in the orthogonal longitudinal turning of quenched and tempered M2 high-speed steels obtained by powder metallurgy. For this research, PCBN tools with high and low-CBN content have been used. Two different cutting edge geometries with a honed radius were tested: with a ground land (S shape) and without it (E shape). Also, the cutting speed was varied from 100 to 220 m/min. A rigid CNC lathe was used. The results showed that the high-CBN, E-shaped tool presented the longest life for a cutting speed of 100 m/min. High-CBN tools with a ground land and honed edge radius (S shaped) showed edge damage and lower values of the tool’s life. Low-CBN, S-shaped tools showed similar results, but with an inferior performance when compared with tools with high CBN content in both forms of edge preparation.
Resumo:
Orthopaedic infections can be polymicrobial existing as a microbiome. Infections often incorporate staphylococcal species, including Staphylococcus aureus. Such infections can lead to life threatening illness and implant failure. Furthermore, biofilm formation on the implant surface can occur, increasing pathogenicity, exacerbating antibiotic resistance and altering antimicrobial mechanism of action. Bacteria change dramatically during the transition to a biofilm growth state: phenotypically; transcriptionally; and metabolically, highlighting the need for research into molecular mechanisms involved in biofilm formation. Metabolomics can provide a tool to analyse metabolic changes which are directly related to the expressed phenotype. Here, we aimed to provide greater understanding of orthopaedic infection caused by S. aureus and biofilm formation on the implant surface. Through metagenome analysis by employing: implant material extraction; DNA extraction; microbial enrichment; and whole genome sequencing, we present a microbiome study of the infected prosthesis to resolve the causative species of orthopaedic hip infection. Results highlight the presence of S. aureus as a primary cause of orthopaedic infection along with Enterococcus faecium and the presence of secondary pathogen Clostridium difficile. Although results were hindered by the presence of host contaminating DNA even after microbial enrichment, conclusions could be made over the potential increased pathogenicity caused by the presence of a secondary pathogen and highlight method and sample preparation considerations when undertaking such a study. Following this finding, studies were focused on an orthopaedic clinical isolate of S. aureus and a metabolome extraction method for staphylococcal biofilms was developed using cell lysis through bead beating and solvent metabolome extraction. The method was found to be reproducible when coupled with liquid chromatography-mass spectrometry (LC-MS) and bioinformatics, allowing for the detection of significant changes in metabolism between planktonic and biofilm cultures to be identified and drug mechanism of actions (MOA) to be studied. Metabolomics results highlight significant changes in a number of metabolic pathways including arginine biosynthesis and purine metabolism between the two cell populations, evidence of S. aureus responding to their changing environment, including oxygen availability and a decrease in pH. Focused investigations on purine metabolism looking for biofilm modulation effects were carried out. Modulation of the S. aureus biofilm phenotype was observed through the addition of exogenous metabolites. Inosine increased biofilm biomass while formycin B, an inosine analogue, showed a dispersal effect and a potential synergistic effect in biofilm dispersal when coupled with gentamycin. Changes in metabolism between planktonic cells and biofilms highlight the requirement for antimicrobial testing to be carried out against planktonic cells and biofilms. Untargeted metabolomics was used to study the MOA of triclosan in S. aureus. The triclosan target and MOA in bacteria has already been characterised, however, questions remain over its effects in bacteria. Although the use of triclosan has come under increasing speculation, its full effects are still largely unknown. Results show that triclosan can induce a cascade of detrimental events in the cell metabolism including significant changes in amino acid metabolism, affecting planktonic cells and biofilms. Results and conclusions provide greater understanding of orthopaedic infections and specifically focus on the S. aureus biofilm, confirming S. aureus as a primary cause of orthopaedic infection and using metabolomic analysis to look at the changing state of metabolism between the different growth states. Metabolomics is a valuable tool for biofilm and drug MOA studies, helping understand orthopaedic infection and implant failure, providing crucial insight into the biochemistry of bacteria for the potential for inferences to be gained, such as the MOA of antimicrobials and the identification of novel metabolic drug targets.
Resumo:
Background: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only.Methods: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made.Results: The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures.Conclusions: The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. © 2010 Richter et al; licensee BioMed Central Ltd.
Resumo:
A key aspect underpinning life-history theory is the existence of trade-offs. Trade-offs occur because resources are limited, meaning that individuals cannot invest in all traits simultaneously, leading to costs for traits such as growth and reproduction. Such costs may be the reason for the sub-maximal growth rates that are often observed in nature, though the fitness consequences of these costs would depend on the effects on lifetime reproductive success. Recently, much attention has been given to the physiological mechanism that might underlie these life-history trade-offs, with oxidative stress (OS) playing a key role. OS is characterised by a build-up of oxidative damage to tissues (e.g. protein, lipids and DNA) from attack by reactive species (RS). RS, the majority of which are by-products of metabolism, are usually neutralised by antioxidants, however OS occurs when there is an imbalance between the two. There are two main theories linking OS with growth and reproduction. The first is that traits like growth and reproduction, being metabolically demanding, lead to an increase in RS production. The second involves the diversion of resources away from self-maintenance processes (e.g. the redox system) when individuals are faced with enhanced growth or reproductive expenditure. Previous research investigating trade-offs involving growth or reproduction and self-maintenance has been equivocal. One reason for this could be that associations among redox biomarkers can vary greatly so that the biomarker selected for analysis can influence the conclusion reached about an individual’s oxidative status. Therefore the first aim of my thesis was to explore the strength and pattern of integration of five biomarkers of OS (three antioxidants, one damage and one general oxidation measure) in wild blue tit (Cyanistes caeruleus) adults and nestlings (Chapter 2). In doing so, I established that all five biomarkers should be included in future analyses, thus using this collection of biomarkers I explored my next aims; whether enhanced growth (Chapters 3 and 4) or reproductive effort (Chapter 5) can lead to increased OS levels, if these traits are traded off against self-maintenance. I accomplished these aims using both a meta-analytic and experimental approach, the latter involving manipulation of brood size in wild blue tits in order to experimentally alter growth rate of nestlings and provisioning rate (a proxy for reproductive expenditure) of adults. I also investigated the potential for redox integration to be used as an index of body condition (Chapter 2), allowing predictions about future fitness consequences of changes to oxidative state to be made. A growth – self-maintenance trade off was supported by my meta-analytic results (Chapter 4) which found OS to be a constraint on growth. However, when faced with experimentally enhanced growth, animals were typically not able to adjust this trade-off so that oxidative damage resulted. This might support the idea that energetically expensive growth causes resources to be diverted away from the redox system; however, antioxidants did not show an overall reduction in response to growth in the meta-analysis suggesting that oxidative costs of growth may result from increased RS production due to the greater metabolism needed for enhanced growth. My experimental data (Chapter 3) showed a similar pattern, with raised protein damage levels (protein carbonyls; PCs) in the fastest growing blue tit chicks in a brood, compared with their slower growing sibs. These within-brood differences in OS levels likely resulted from within-brood hierarchies and might have masked any between-brood differences, which were not observed here. Despite evidence for a growth – self-maintenance trade off, my experimental results on blue tits found no support for the hypothesis that self-maintenance is also traded off against reproduction, another energetically demanding trait. There was no link between experimentally altered reproductive expenditure and OS, nor was there a direct correlation between reproductive effort and OS (Chapter 5). However, there are various factors that likely influence whether oxidative costs are observed, including environmental conditions and whether such costs are transient. This emphasises the need for longitudinal studies following the same individuals over multiple years and across a wide range of habitats that differ in quality. This would allow investigation into how key life events interact; it might be that raised OS levels from rapid early growth have the potential to constrain reproduction or that high parental OS levels constrain offspring growth. Any oxidative costs resulting from these life-history trade-offs have the potential to impact on future fitness. Redox integration of certain biomarkers might prove to be a useful tool in making predictions about fitness, as I found in Chapter 2, as well as establishing how the redox system responds, as a whole, to changes to growth and reproduction. Finally, if the tissues measured can tolerate a given level of OS, then the level of oxidative damage might be irrelevant and not impact on future fitness at all.
Resumo:
Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hotembossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes for 1x and 1.5x scale devices respectively, were found to be clinically relevant with respect to the reported array insertion times during surgical implantation. Eventually, the stiffener-embedded arrays would not need to be permanently attached to current insertion tools which are left behind after implantation and congest the cochlear scala tympani chamber. Finally, a simulation-based approach for accelerated failure analysis of PLA stiffeners and characterization of PVP-b-PDLLA copolymer adhesive has been explored. The residual functional life of embedded PLA stiffeners exposed to body-fluid and thereby subjected to degradation and erosion has been estimated by simulating PLA stiffeners with different parylene coating failure types and different PLA types for a given parylene coating failure type. For characterizing the PVP-b-PDLLA copolymer adhesive, several formulations of the copolymer adhesive were simulated and compared based on the insertion tool detachment times that were predicted from the dissolution, degradation, and erosion behavior of the simulated adhesive formulations. Results indicate that the simulation-based approaches could be used to reduce the total number of time consuming and expensive in-vitro tests that must be conducted.
Resumo:
Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.
Resumo:
Severe accidents caused by the armed spider Phoneutria nigriventer cause neurotoxic manifestations in victims. In experiments with rats, P. nigriventer venom (PNV) temporarily disrupts the properties of the BBB by affecting both the transcellular and the paracellular route. However, it is unclear how cells and/or proteins participate in the transient opening of the BBB. The present study demonstrates that PNV is a substrate for the multidrug resistance protein-1 (MRP1) in cultured astrocyte and endothelial cells (HUVEC) and increases mrp1 and cx43 and down-regulates glut1 mRNA transcripts in cultured astrocytes. The inhibition of nNOS by 7-nitroindazole suggests that NO derived from nNOS mediates some of these effects by either accentuating or opposing the effects of PNV. In vivo, MRP1, GLUT1 and Cx43 protein expression is increased differentially in the hippocampus and cerebellum, indicating region-related modulation of effects. PNV contains a plethora of Ca(2+), K(+) and Na(+) channel-acting neurotoxins that interfere with glutamate handling. It is suggested that the findings of the present study are the result of a complex interaction of signaling pathways, one of which is the NO, which regulates BBB-associated proteins in response to PNV interference on ions physiology. The present study provides additional insight into PNV-induced BBB dysfunction and shows that a protective mechanism is activated against the venom. The data shows that PNV has qualities for potential use in drug permeability studies across the BBB.
Resumo:
Transfer of reaction products formed on the surfaces of two mutually rubbed dielectric solids makes an important if not dominating contribution to triboelectricity. New evidence in support of this statement is presented in this report, based on analytical electron microscopy coupled to electrostatic potential mapping techniques. Mechanical action on contacting surface asperities transforms them into hot-spots for free-radical formation, followed by electron transfer producing cationic and anionic polymer fragments, according to their electronegativity. Polymer ions accumulate creating domains with excess charge because they are formed at fracture surfaces of pulled-out asperities. Another factor for charge segregation is the low polymer mixing entropy, following Flory and Huggins. The formation of fractal charge patterns that was previously described is thus the result of polymer fragment fractal scatter on both contacting surfaces. The present results contribute to the explanation of the centuries-old difficulties for understanding the triboelectric series and triboelectricity in general, as well as the dissipative nature of friction, and they may lead to better control of friction and its consequences.
Resumo:
The SLC8A1 gene, which encodes the Na(+)/Ca(2+) exchanger, plays a key role in calcium homeostasis. Our previous gene expression oligoarray data revealed SLC8A1 underexpression in penile carcinoma (PeCa). The aim of this study was to investigate whether the dysregulation of SLC8A1 expression is associated with apoptosis and cell proliferation in PeCa, via modulation of calcium concentration. The underlying mechanisms of SLC8A1 underexpression were also explored, focusing on copy number alteration and microRNA. Transcript levels of SLC8A1 gene and miR-223 were evaluated by quantitative PCR, comparing PeCa samples with normal glans tissues. SLC8A1 copy number was evaluated by microarray-based comparative genomic hybridization (array-CGH). Caspase-3 and Ki-67 immunostaining, as well as calcium distribution by Laser Ablation Imaging Inductively Coupled Plasma Mass Spectrometry [LA(i)-ICP-MS], were investigated in both normal and tumor samples. Confirming our previous data, SLC8A1 underexpression was detected in PeCa samples (P=0.001) and was not associated with gene copy number loss. In contrast, overexpression of miR-223 (P=0.002) was inversely correlated with SLC8A1 (P=0.015, r=-0.426), its putative repressor. In addition, SLC8A1 underexpression was associated with decreased calcium distribution, high Ki-67 and low caspase-3 immunoexpression in PeCa when compared with normal tissues. Down-regulation of the SLC8A1 gene, most likely mediated by its regulator miR-223, can lead to reduced calcium levels in PeCa and, consequently, to suppression of apoptosis and increased tumor cell proliferation. These data suggest that the miR-223-NCX1-calcium-signaling axis may represent a potential therapeutic approach in PeCa.
Resumo:
Isatin, an indole alkaloid has been shown to have anti-microbial, anti-tumor and anti-inflammatory effects. Due to its findings, we evaluated whether this alkaloid would have any effect on TNBS-induced colitis. Animals (male Unib:WH rats, aged 8 weeks old) were induced colitis through a rectal administration of 2,4,6-trinitrobenzene sulphonic acid using a catheter inserted 8 cm into the rectum of the animals. The rats were divided into two major groups: non-colitic and colitic. The colitic group was sub-divided into 6 groups (10 animals per group): colitic non-treated, Isatin 3; 6; 12.5; 18.75 and 25 mg/kg. Our main results showed that the oral treatment with Isatin 6 and 25 mg/kg were capable of avoiding the increase in TNF-α, COX-2 and PGE₂ levels when compared to the colitic non-treated group. Interestingly, the same doses (6 and 25 mg/kg) were also capable of preventing the decrease in IL-10 levels comparing with the colitic non-treated group. The levels of MPO, (an indirect indicator of neutrophil presence), were also maintained lower than those of the colitic non-treated group. Isatin also prevented the decrease of SOD activity and increase of GSH-Px and GSH-Rd activity as well as the depletion of GSH levels. In conclusion, both pre-treatments (6 and 25 mg/kg) were capable of protecting the gut mucosa against the injury caused by TNBS, through the combination of antioxidant and anti-inflammatory properties, which, together, showed a protective activity of the indole alkaloid Isatin.
Resumo:
Previous studies from our group have demonstrated the protective effect of S-nitroso-N-acetylcysteine (SNAC) on the cardiovascular system in dyslipidemic LDLr-/- mice that develop atheroma and left ventricular hypertrophy after 15 days on a high fat diet. We have shown that SNAC treatment attenuates plaque development via the suppression of vascular oxidative stress and protects the heart from structural and functional myocardial alterations, such as heart arrhythmia, by reducing cardiomyocyte sensitivity to catecholamines. Here we investigate the ability of SNAC to modulate oxidative stress and cell survival in cardiomyocytes during remodeling and correlation with β₂-AR signaling in mediating this protection. Ventricular superoxide (O₂⁻) and hydrogen peroxide (H₂O₂) generation was measured by HPLC methods to allow quantification of dihydroethidium (DHE) products. Ventricular histological sections were stained using terminal dUTP nick-end labeling (TUNEL) to identify nuclei with DNA degradation (apoptosis) and this was confirmed by Western blot for cleaved caspase-3 and caspase-7 protein expression. The findings show that O₂⁻ and H₂O₂ production and also cell apoptosis were increased during left ventricular hypertrophy (LVH). SNAC treatment reduced oxidative stress during on cardiac remodeling, measured by decreased H₂O₂ and O₂⁻ production (65% and 52%, respectively), and a decrease in the ratio of p-Ser1177 eNOS/total eNOS. Left ventricle (LV) from SNAC-treated mice revealed a 4-fold increase in β₂-AR expression associated with coupling change to Gi; β₂-ARs-S-nitrosation (β₂-AR-SNO) increased 61%, while apoptosis decreased by 70%. These results suggest that the cardio-protective effect of SNAC treatment is primarily through its anti-oxidant role and is associated with β₂-ARs overexpression and β₂-AR-SNO via an anti-apoptotic pathway.
Resumo:
Chemical cross-linking has emerged as a powerful approach for the structural characterization of proteins and protein complexes. However, the correct identification of covalently linked (cross-linked or XL) peptides analyzed by tandem mass spectrometry is still an open challenge. Here we present SIM-XL, a software tool that can analyze data generated through commonly used cross-linkers (e.g., BS3/DSS). Our software introduces a new paradigm for search-space reduction, which ultimately accounts for its increase in speed and sensitivity. Moreover, our search engine is the first to capitalize on reporter ions for selecting tandem mass spectra derived from cross-linked peptides. It also makes available a 2D interaction map and a spectrum-annotation tool unmatched by any of its kind. We show SIM-XL to be more sensitive and faster than a competing tool when analyzing a data set obtained from the human HSP90. The software is freely available for academic use at http://patternlabforproteomics.org/sim-xl. A video demonstrating the tool is available at http://patternlabforproteomics.org/sim-xl/video. SIM-XL is the first tool to support XL data in the mzIdentML format; all data are thus available from the ProteomeXchange consortium (identifier PXD001677).
Resumo:
MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.
Resumo:
The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA) denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10) of 3 PMMA denture teeth (Trubyte Biotone, cross-linked PMMA; Trilux, highly cross-linked IPN (interpenetrating polymer network)-PMMA; and Vivodent, highly cross-linked PMMA) were secured in an in vitro 2-body wear-testing apparatus that produced sliding contact of the specimens (4.5 cycles/s, sliding distance of 20 mm, under 37°C running water) against glazed or airborne particle abraded ceramic. Wear resistance was measured as height loss (mm) under 300 g (sliding force) after 100,000 cycles, using a digital measuring microscope. Mean values were analyzed by 2-way ANOVA and Tukey's test (a=0.05). The wear of Trubyte Biotone (0.93 ± 0.14 mm) was significantly higher than that of both other types of teeth tested against abraded ceramic (p<0.05). The Vivodent tooth (0.64 ± 0.17 mm) exhibited the best wear resistance among the denture teeth tested against airborne particle abraded ceramic. There were no statistically significant differences (p>0.05) in wear among the 3 denture teeth evaluated against glazed ceramic. Trilux and Vivodent teeth tested against either glazed or airborne particle abraded ceramic did not differ significantly from each other (p<0.05). All teeth showed significantly more wear against airborne particle abraded ceramic than against glazed ceramic (p<0.05). In conclusion, the three types of PMMA denture teeth presented significantly different wear resistance against the abraded ceramic. The high-strength PMMA denture teeth were more wear-resistant than the conventional PMMA denture tooth.
Resumo:
One of the most important properties of artificial teeth is the abrasion wear resistance, which is determinant in the maintenance of the rehabilitation's occlusal pattern. OBJECTIVES: This in vitro study aims to evaluate the abrasion wear resistance of 7 brands of artificial teeth opposed to two types of antagonists. MATERIAL AND METHODS: Seven groups were prepared with 12 specimens each (BIOLUX & BL, TRILUX & TR, BLUE DENT & BD, BIOCLER & BC, POSTARIS & PO, ORTHOSIT & OR, GNATHOSTAR & GN), opposed to metallic (M & nickel-chromium alloy), and to composite antagonists (C & Solidex indirect composite). A mechanical loading device was used (240 cycles/min, 4 Hz speed, 10 mm antagonist course). Initial and final contours of each specimen were registered with aid of a profile projector (20x magnification). The linear difference between the two profiles was measured and the registered values were subjected to ANOVA and Tukey's test. RESULTS: Regarding the antagonists, only OR (M = 10.45 ± 1.42 µm and C = 2.77 ± 0.69 µm) and BC (M = 6.70 ± 1.37 µm and C = 4.48 ± 0.80 µm) presented statistically significant differences (p < 0.05). Best results were obtained with PO (C = 2.33 ± 0.91 µm and M = 1.78 ± 0.42 µm), followed by BL (C = 3.70 ± 1.32 µm and M = 3.70 ± 0.61 µm), statistically similar for both antagonists (p>0.05). Greater result variance was obtained with OR, which presented the worse results opposed to Ni-Cr (10.45 ± 1.42 µm), and results similar to the best ones against composite (2.77 ± 0.69 µm). CONCLUSIONS: Within the limitations of this study, it may be concluded that the antagonist material is a factor of major importance to be considered in the choice of the artificial teeth to be used in the prosthesis.