955 resultados para Tissue Engineering. Bone. Extracellular Matrix


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrin-mediated force application induces a conformational change in latent TGF-β1 that leads to the release of the active form of the growth factor from the extracellular matrix (ECM). Mechanical activation of TGF-β1 is currently understood as an acute process that depends on the contractile force of cells. However, we show that ECM remodeling, preceding the activation step, mechanically primes latent TGF-β1 akin to loading a mechanical spring. Cell-based assays and unique strain devices were used to produce a cell-derived ECM of controlled organization and prestrain. Mechanically conditioned ECM served as a substrate to measure the efficacy of TGF-β1 activation after cell contraction or direct force application using magnetic microbeads. The release of active TGF-β1 was always higher from prestrained ECM as compared with unorganized and/or relaxed ECM. The finding that ECM prestrain regulates the bioavailability of TGF-β1 is important to understand the context of diseases that involve excessive ECM remodeling, such as fibrosis or cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To control the selective adhesion of human endothelial cells and human serum proteins to bioceramics of different compositions, a multifunctional ligand containing a cyclic arginine-glycine-aspartate (RGD) peptide, a tetraethylene glycol spacer, and a gallate moiety was designed, synthesized, and characterized. The binding of this ligand to alumina-based, hydroxyapatite-based, and calcium phosphate-based bioceramics was demonstrated. The conjugation of this ligand to the bioceramics induced a decrease in the nonselective and integrin-selective binding of human serum proteins, whereas the binding and adhesion of human endothelial cells was enhanced, dependent on the particular bioceramics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. In native heart, pacing cells generate electrical stimuli that spread throughout the heartcausing cell membrane depolarization and activation of contractile apparatus. We ought to examine whether electricalstimulation of adipose tissue-derived progenitor cells (ATDPCs) exerts phenotypic and genetic changes that enhance theircardiomyogenic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: to evaluate the role of fibrillar extracellular matrix components in the pathogenesis of inguinal hernias. METHODS: samples of the transverse fascia and of the anterior sheath of the rectus abdominis muscle were collected from 40 men aged between 20 and 60 years with type II and IIIA Nyhus inguinal hernia and from 10 fresh male cadavers (controls) without hernia in the same age range. The staining technique was immunohistochemistry for collagen I, collagen III and elastic fibers; quantification of fibrillar components was performed with an image analysis processing software. RESULTS: no statistically significant differences were found in the amount of elastic fibers, collagen I and collagen III, and the ratio of collagen I / III among patients with inguinal hernia when compared with subjects without hernia. CONCLUSION: the amount of fibrillar extracellular matrix components did not change in patients with and without inguinal hernia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular matrix plays an important role in chronic hepatic lesions and has been studied in experimental intoxication models. However in cattle, studies on chronic disease have focused on the hepatocellular damage and extracellular matrix (ECM) changes are usually overlooked. There are no specific studies on the hepatic ECM in either normal or chronically damaged bovine liver. Thus an experimental model of hepatic toxicity model using Senecio brasiliensis poisoned calves was designed. Senecio brasiliensis contains pyrrolizidine alkaloids which cause either acute or chronic progressive dose dependent liver damage. Five calves were orally fed with 0.38g of dry leaves of S. brasiliensis/kg/day for 24 days. Liver needle biopsy specimens were obtained every 15 days for 60 days. Clinical signs of digestive complications appeared at 3rd week. One calf died on 45th day and four were evaluated up to 60th day. Biopsy samples were processed for routine light microscopy, immuno-histochemistry and transmission electron microscopy. From 30th day on progressive liver damage characterized by hepatocellular ballooning, necrosis, apoptosis and megalocytosis, centrilobular, pericellular and portal fibrosis were seen by light microscopy. Quantitative and semi-quantitative measurements of hepatic ECM components were performed before and after the onset of lesions. Morphometric analysis of total collagen and elastic fiber system was conducted. Total collagen and I and III collagen types progressively increased in throughout the liver of affected calves. Changes in location, amount and disposition of the elastic fiber system were also observed. Then numbers of Kupffer cells were significantly increased at 30th day and total numbers of sinusoidal cells were significantly increased at 45th and 60th days. Liver damage was progressive and irreversible even after the exposure to the plant was discontinued. Severe fibrotic lesions occurred mainly in portal tracts, followed by veno-occlusive and pericellular fibrosis. Collagen types I and III s were present in every normal and damaged liver, with predominance of type I. In affected calves the increase of total collagen and elastic fibers system paralleled the number of total sinusoidal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations in extracellular matrix (ECM) expression in the central nervous system (CNS) usually associated with inflammatory lesions have been described in several pathological situations including neuroblastoma and demyelinating diseases. The participation of fibronectin (FN) and its receptor, the VLA-4 molecule, in the migration of inflammatory cells into the CNS has been proposed. In Trypanosoma cruzi infection encephalitis occurs during the acute phase, whereas in Toxoplasma infection encephalitis is a chronic persisting process. In immunocompromised individuals such as AIDS patients, T. cruzi or T. gondii infection can lead to severe CNS damage. At the moment, there are no data available regarding the molecules involved in the entrance of inflammatory cells into the CNS during parasitic encephalitis. Herein, we characterized the expression of the ECM components FN and laminin (LN) and their receptors in the CNS of T. gondii- and T. cruzi-infected mice. An increased expression of FN and LN was detected in the meninges, leptomeninges, choroid plexus and basal lamina of blood vessels. A fine FN network was observed involving T. gondii-free and T. gondii-containing inflammatory infiltrates. Moreover, perivascular spaces presenting a FN-containing filamentous network filled with a4+ and a5+ cells were observed. Although an increased expression of LN was detected in the basal lamina of blood vessels, the CNS inflammatory cells were a6-negative. Taken together, our results suggest that FN and its receptors VLA-4 and VLA-5 might be involved in the entrance, migration and retention of inflammatory cells into the CNS during parasitic infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a result of recent investigations, the cytoskeleton can be viewed as a cytoplasmic system of interconnected filaments with three major integrative levels: self-assembling macromolecules, filamentous polymers, e.g., microtubules, intermediate filaments and actin filaments, and supramolecular structures formed by bundles of these filaments or networks resulting from cross-bridges between these major cytoskeletal polymers. The organization of this biological structure appears to be sensitive to fine spatially and temporally dependent regulatory signals. In differentiating neurons, regulation of cytoskeleton organization is particularly relevant, and the microtubule-associated protein (MAP) tau appears to play roles in the extension of large neuritic processes and axons as well as in the stabilization of microtubular polymers along these processes. Within this context, tau is directly involved in defining neuronal polarity as well as in the generation of neuronal growth cones. There is increasing evidence that elements of the extracellular matrix contribute to the control of cytoskeleton organization in differentiating neurons, and that these regulations could be mediated by changes in MAP activity. In this brief review, we discuss the possible roles of tau in mediating the effects of extracellular matrix components on the internal cytoskeletal arrays and its organization in growing neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS). The extracellular matrix (ECM) represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries) that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell interactions with extracellular matrices are important to pathological changes that occur during cell transformation and tumorigenesis. Several extracellular matrix proteins including fibronectin, thrombospondin-1, laminin, SPARC, and osteopontin have been suggested to modulate tumor phenotype by affecting cell migration, survival, or angiogenesis. Likewise, proteases including the matrix metalloproteinases (MMPs) are understood to not only facilitate migration of cells by degradation of matrices, but also to affect tumor formation and growth. We have recently demonstrated an in vivo role for the RGD-containing protein, osteopontin, during tumor progression, and found evidence for distinct functions in the host versus the tumor cells. Because of the compartmentalization and temporal regulation of MMP expression, it is likely that MMPs may also function dually in host stroma and the tumor cell. In addition, an important function of proteases appears to be not only degradation, but also cleavage of matrix proteins to generate functionally distinct fragments based on receptor binding, biological activity, or regulation of growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular matrix (ECM) molecules play important roles in the pathobiology of the major human central nervous system (CNS) inflammatory/demyelinating disease multiple sclerosis (MS). This mini-review highlights some recent work on CNS endothelial cell interactions with vascular basement membrane ECM as part of the cellular immune response, and roles for white matter ECM molecules in demyelination and remyelination in MS lesions. Recent basic and clinical investigations of MS emphasize axonal injury, not only in chronic MS plaques, but also in acute lesions; progressive axonal degeneration in normal-appearing white matter also may contribute to brain and spinal cord atrophy in MS patients. Remodeling of the interstitial white matter ECM molecules that affect axon regeneration, however, is incompletely characterized. Our ongoing immunohistochemical studies demonstrate enhanced ECM versican, a neurite and axon growth-inhibiting white matter ECM proteoglycan, and dermatan sulfate proteoglycans at the edges of inflammatory MS lesions. This suggests that enhanced proteoglycan deposition in the ECM and axonal growth inhibition may occur early and are involved in expansion of active lesions. Decreased ECM proteoglycans and their phagocytosis by macrophages along with myelin in plaque centers imply that there is "injury" to the ECM itself. These results indicate that white matter ECM proteoglycan alterations are integral to MS pathology at all disease stages and that they contribute to a CNS ECM that is inhospitable to axon regrowth/regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fucans, a family of sulfated polysaccharides present in brown seaweed, have several biological activities. Their use as drugs would offer the advantage of no potential risk of contamination with viruses or particles such as prions. A fucan prepared from Spatoglossum schröederi was tested as a possible inhibitor of cell-matrix interactions using wild-type Chinese hamster ovary cells (CHO-K1) and the mutant type deficient in xylosyltransferase (CHO-745). The effect of this polymer on adhesion properties with specific extracellular matrix components was studied using several matrix proteins as substrates for cell attachment. Treatment with the polymer inhibited the adhesion of fibronectin to both CHO-K1 (2 x 10(5))()and CHO-745 (2 x 10(5) and 5 x 10(5)) cells. No effect was detected with laminin, using the two cell types. On the other hand, adhesion to vitronectin was inhibited in CHO-K1 cells and adhesion to type I collagen was inhibited in CHO-745 cells. In spite of this inhibition, the fucan did not affect either cell proliferation or cell cycle. These results demonstrate that this polymer is a new anti-adhesive compound with potential pharmacological applications.