988 resultados para Tin -- Magnetic properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the spin and valence state equilibria and superexchange interaction of the various cobalt ions in LaCoO3, an approximate semiempirical formula has been proposed and used to calculate magnetic susceptibilities of LaCoO3 over a wide temperature range (100-1200 K). The results indicate that there are thermodynamic equilibria between the low spin state Co(III) (t2g6e(g)0) ion, the high spin state Co3+ (t2g4e(g)2) ion, the Co(II) (t2g6e(g)1) ion and the Co(IV) (t2g5e(g)0) ion in LaCoO3. The energy difference between the low spin state Co(III) and the high spin state Co3+ is about 0.006 eV. The content of the low spin state Co(III) ion is predominant in LaCoO3 and the content of the high spin state Co3+ ion varies with temperature, reaching a maximum at about 350 K, then decreasing gradually with increasing temperature. At low temperature the contents of the Co(II) ion and the Co(IV) ion in LaCoO3 are negligible, while above 200 K the contents of both the Co(II) ion and the Co(IV) ion increase with increasing temperature; however, the content of the Co(II) ion always is larger than that of the Co(IV) ion at any temperature. These calculated results are in good agreement with experimental results of the Mossbauer effect, magnetic susceptibility and electrical conductivity of LaCoO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compounds YSr22-xCaxVO9-y have an orthorhombic symmetry. XPS results show that the vanadium ions exist in the mixing valence in the system. Temperature dependence of magnetic susceptibility represents the Curie-Weiss law. The valence state of vanadium obviously affects the magnetic properties of YSr2-xCaxV3O9-y. The system exhibits a paramagnetic behavior from 300K to 1073K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paramagnetic susceptibility of lanthanum manganite has been measured over a wide temperature range (100-1073 K). On the basis of the thermodynamic equilibria between the various manganese ions with different valence and spin states and the magnetic interactions between the various manganese ions, a semiempirical formula has been proposed to calculate the paramagnetic susceptibilities of lanthanum manganite at different temperatures. The results indicate that most of the discrepancies between the calculated and experimental reciprocal susceptibilities of lanthanum manganite are less than 10% and that the relative contents of the various manganese ions in lanthanum manganite vary with temperature. The relative content of the trivalent manganese ion with a high spin state is dominant over the whole temperature range, while be relative content of the tetravalent manganese ion with a high spin state decreases monotonously with increasing temperature. At 300 K the calculated relative content of the tetravalent manganese ion in lanthanum manganite is about 34%, which is in good agreement with the experimental result (30%). There are some divalent manganese ions present in lanthanum manganite from low temperature to high temperature. The ratio of the relative contents of the tetravalent and divalent manganese ions in the compound varies with temperature. Above 750 K the relative content of the tetravalent manganese ion is less than that of the divalent manganese ion. The variation in the electrical resistivity of lanthanum manganite with temperature has also been interpreted reasonably.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All the members of the solid solution of YSr2-xCaxV3O9-y have the orthorhombic symmetry. Their electrical and magnetic properties have been studied. The magnetic susceptibility and electrical resistivity increase gradually with x. The system shows paramagnetic behavior both at 300 K and at 77 K. It is shown that a change of valence state of vanadium obviously affects the electrical and magnetic properties of the solid solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical and magnetical properties of LaSr(2-x)Ca(x)V3O9 +/- y have been investigated. The compounds are antiferromagnetic. They show a metallic conduction other than semiconductivity. The trivalent and tetravalent vanadium ions coexist in the system. The magnetic susceptibility increases and the resistivity decreases at room temperature with the increase of x value. It is shown that the change of the valency state of vanadium obviously influences the electrical and magnetical properties of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future read heads in hard disc storage require high conformal coatings of metal magnetic layers over high aspect ratio profiles. This paper describes pioneering work on the use of MOCVD for the deposition of cobalt layers. While pure cobalt layers could be deposited at 400C their magnetic properties are poor. It was found that the magnetic properties of the layers could be significantly enhanced with an optimised rapid thermal anneal. This work was sponsored by Seagate Technology and led to a follow up PhD studentship on the co-deposition of cobalt and iron by MOCVD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x = 0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform with out microcracks . The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size in dependent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11GHz as cobalt content increased from x = 0.1 to 0.2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and magnetic properties of F16CuPc thin films and powder, including x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and theoretical modelling of exchange interactions are reported. Analysis of XRD from films, with thickness ranging between 100 and 160 nm, deposited onto Kapton and a perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) interlayer shows that the stacking angle (defined in the text) of the film is independent of the thickness, but that the texture is modified by both film thickness and substrate chemistry. The SQUID measurements suggest that all samples are paramagnetic, a result that is confirmed by our theoretical modelling including density functional theory calculations of one-dimensional molecular chains and Green's function perturbation theory calculations for a molecular dimer. By investigating theoretically a range of different geometries, we predict that the maximum possible exchange interaction between F16CuPc molecules is twice as large as that in unfluorinated copper-phthalocyanine (CuPc). This difference arises from the smaller intermolecular spacing in F16CuPc. Our density functional theory calculation for isolated F16CuPc molecule also shows that the energy levels of Kohn-Sham orbitals are rigidly shifted similar to 1 eV lower in F16CuPc compared to CuPc without a significant modification of the intramolecular spin physics, and that therefore the two molecules provide a suitable platform for independently varying magnetism and charge transport. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic properties of two compositions of random solutions in the TlCu2-xFexSe2 system with x = 0.2 and 0.45 have been investigated by superconducting quantum interference device magnetometry. The crystal structure is of a layer type and ordering due to the iron atoms occurs at low temperatures, with T-c = 85 K for x = 0.2 and T-c = 130 K for x = 0.45. The samples were highly textured crystals and the magnetic moments of both compositions were found to align along the c axis of the structure. The saturation moments were found to be 1.5 mu(B)/Fe x = 0.2 and 0.66 mu(B)/Fe for x = 0.45. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new phase in the ternary Ir-Mn-Si system has been synthesised. From powder neutron diffraction data the crystal structure was determined to be of the AlAu4 type and to be described in the cubic space group P2(1)3 with the unit cell a = 6.4973(3) Angstrom. Susceptibility measurements using a SQUID-magnetometer showed a transition typical of anti ferromagnetism, with T-N = 210 K. Low temperature antiferromagnetic order is confirmed by extra peaks in neutron diffractograms recorded at 10 and 80 K. (C) 2004 Elsevier B.V. All rights reserved.