962 resultados para Time series. Transfer function. Recursive Estimation. Plunger lift. Gas flow.
Resumo:
Electrochemical systems are ideal working-horses for studying oscillatory dynamics. Experimentally obtained time series, however, are usually associated with a spontaneous drift in some uncontrollable parameter that triggers transitions among different oscillatory patterns, despite the fact that all controllable parameters are kept constant. Herein we present an empirical method to stabilize experimental potential time series. The method consists of applying a negative galvanodynamic sweep to compensate the spontaneous drift and was tested for the oscillatory electro-oxidation of methanol on platinum. For a wide range of applied currents, the base system presents spontaneous transitions from quasi-harmonic to mixed mode oscillations. Temporal patterns were stabilized by galvanodynamic sweeps at different rates. The procedure resulted in a considerable increase in the number of oscillatory cycles from 5 to 20 times, depending on the specific temporal pattern. The spontaneous drift has been associated with uncompensated oscillations, in which the coverage of some adsorbed species are not reestablished after one cycle; i.e., there is a net accumulation and/or depletion of adsorbed species during oscillations. We interpreted the rate of the galvanodynamic sweep in terms of the time scales of the poisoning processes that underlies the uncompensated oscillations and thus the spontaneous slow drift.
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
This work concerns forecasting with vector nonlinear time series models when errorsare correlated. Point forecasts are numerically obtained using bootstrap methods andillustrated by two examples. Evaluation concentrates on studying forecast equality andencompassing. Nonlinear impulse responses are further considered and graphically sum-marized by highest density region. Finally, two macroeconomic data sets are used toillustrate our work. The forecasts from linear or nonlinear model could contribute usefulinformation absent in the forecasts form the other model.
Resumo:
This thesis consists of four manuscripts in the area of nonlinear time series econometrics on topics of testing, modeling and forecasting nonlinear common features. The aim of this thesis is to develop new econometric contributions for hypothesis testing and forecasting in these area. Both stationary and nonstationary time series are concerned. A definition of common features is proposed in an appropriate way to each class. Based on the definition, a vector nonlinear time series model with common features is set up for testing for common features. The proposed models are available for forecasting as well after being well specified. The first paper addresses a testing procedure on nonstationary time series. A class of nonlinear cointegration, smooth-transition (ST) cointegration, is examined. The ST cointegration nests the previously developed linear and threshold cointegration. An Ftypetest for examining the ST cointegration is derived when stationary transition variables are imposed rather than nonstationary variables. Later ones drive the test standard, while the former ones make the test nonstandard. This has important implications for empirical work. It is crucial to distinguish between the cases with stationary and nonstationary transition variables so that the correct test can be used. The second and the fourth papers develop testing approaches for stationary time series. In particular, the vector ST autoregressive (VSTAR) model is extended to allow for common nonlinear features (CNFs). These two papers propose a modeling procedure and derive tests for the presence of CNFs. Including model specification using the testing contributions above, the third paper considers forecasting with vector nonlinear time series models and extends the procedures available for univariate nonlinear models. The VSTAR model with CNFs and the ST cointegration model in the previous papers are exemplified in detail,and thereafter illustrated within two corresponding macroeconomic data sets.
Resumo:
After more than forty years studying growth, there are two classes of growth models that have emerged: exogenous and endogenous growth models. Since both try to mimic the same set of long-run stylized facts, they are observationally equivalent in some respects. Our goals in this paper are twofold First, we discuss the time-series properties of growth models in a way that is useful for assessing their fit to the data. Second, we investigate whether these two models successfully conforms to U.S. post-war data. We use cointegration techniques to estimate and test long-run capital elasticities, exogeneity tests to investigate the exogeneity status of TFP, and Granger-causality tests to examine temporal precedence of TFP with respect to infrastructure expenditures. The empirical evidence is robust in confirming the existence of a unity long-run capital elasticity. The analysis of TFP reveals that it is not weakly exogenous in the exogenous growth model Granger-causality test results show unequivocally that there is no evidence that TFP for both models precede infrastructure expenditures not being preceded by it. On the contrary, we find some evidence that infras- tructure investment precedes TFP. Our estimated impact of infrastructure on TFP lay rougbly in the interval (0.19, 0.27).
Resumo:
Using national accounts data for the revenue-GDP and expenditure GDP ratios from 1947 to 1992, we examine two central issues in public finance. First, was the path of public debt sustainable during this period? Second, if debt is sustainable, how has the government historically balanced the budget after hocks to either revenues or expenditures? The results show that (i) public deficit is stationary (bounded asymptotic variance), with the budget in Brazil being balanced almost entirely through changes in taxes, regardless of the cause of the initial imbalance. Expenditures are weakly exogenous, but tax revenues are not;(ii) a rational Brazilian consumer can have a behavior consistent with Ricardian Equivalence (iii) seignorage revenues are critical to restore intertemporal budget equilibrium, since, when we exclude them from total revenues, debt is not sustainable in econometric tests.
Resumo:
While it is recognized that output fuctuations are highly persistent over certain range, less persistent results are also found around very long horizons (Conchrane, 1988), indicating the existence of local or temporary persistency. In this paper, we study time series with local persistency. A test for stationarity against locally persistent alternative is proposed. Asymptotic distributions of the test statistic are provided under both the null and the alternative hypothesis of local persistency. Monte Carlo experiment is conducted to study the power and size of the test. An empirical application reveals that many US real economic variables may exhibit local persistency.
Resumo:
Using national accounts data for the revenue-GDP and expenditureGDP ratios from 1947 to 1992, we examine three central issues in public finance. First, was the path of public debt sustainable during this period? Second, if debt is sustainable, how has the government historically balanced the budget after shocks to either revenues or expenditures? Third, are expenditures exogenous? The results show that (i) public deficit is stationary (bounded asymptotic variance), with the budget in Brazil being balanced almost entirely through changes in taxes, regardless of the cause of the initial imbalance. Expenditures are weakly exogenous, but tax revenues are not; (ii) the behavior of a rational Brazilian consumer may be consistent with Ricardian Equivalence; (iii) seigniorage revenues are critical to restore intertemporal budget equilibrium, since, when we exclude them from total revenues, debt is not sustainable in econometric tests.
Resumo:
The thesis at hand adds to the existing literature by investigating the relationship between economic growth and outward foreign direct investments (OFDI) on a set of 16 emerging countries. Two different econometric techniques are employed: a panel data regression analysis and a time-series causality analysis. Results from the regression analysis indicate a positive and significant correlation between OFDI and economic growth. Additionally, the coefficient for the OFDI variable is robust in the sense specified by the Extreme Bound Analysis (EBA). On the other hand, the findings of the causality analysis are particularly heterogeneous. The vector autoregression (VAR) and the vector error correction model (VECM) approaches identify unidirectional Granger causality running either from OFDI to GDP or from GDP to OFDI in six countries. In four economies causality among the two variables is bidirectional, whereas in five countries no causality relationship between OFDI and GDP seems to be present.
Resumo:
It is well known that cointegration between the level of two variables (e.g. prices and dividends) is a necessary condition to assess the empirical validity of a present-value model (PVM) linking them. The work on cointegration,namelyon long-run co-movements, has been so prevalent that it is often over-looked that another necessary condition for the PVM to hold is that the forecast error entailed by the model is orthogonal to the past. This amounts to investigate whether short-run co-movememts steming from common cyclical feature restrictions are also present in such a system. In this paper we test for the presence of such co-movement on long- and short-term interest rates and on price and dividend for the U.S. economy. We focuss on the potential improvement in forecasting accuracies when imposing those two types of restrictions coming from economic theory.
Resumo:
Using a sequence of nested multivariate models that are VAR-based, we discuss different layers of restrictions imposed by present-value models (PVM hereafter) on the VAR in levels for series that are subject to present-value restrictions. Our focus is novel - we are interested in the short-run restrictions entailed by PVMs (Vahid and Engle, 1993, 1997) and their implications for forecasting. Using a well-known database, kept by Robert Shiller, we implement a forecasting competition that imposes different layers of PVM restrictions. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to the unrestricted VAR. Moreover, imposing short-run restrictions produces forecast winners 70% of the time for the target variables of PVMs and 63.33% of the time when all variables in the system are considered.