865 resultados para Time equivalent approach
Resumo:
Many seemingly disparate approaches for marginal modeling have been developed in recent years. We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the proposed copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts.
Resumo:
Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.
Resumo:
Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.
Resumo:
Xu and colleagues evaluated the impact of increasing mean arterial blood pressure levels through norepinephrine administration on systemic hemodynamics, tissue perfusion, and sublingual microcirculation of septic shock patients with chronic hypertension. The authors concluded that, although increasing arterial blood pressure improved sublingual microcirculation parameters, no concomitant improvement in systemic tissue perfusion indicators was found. Here, we discuss why resuscitation targets may need to be individualized, taking into account the patient's baseline condition, and present directions for future research in this field.
Resumo:
Analysis of recurrent events has been widely discussed in medical, health services, insurance, and engineering areas in recent years. This research proposes to use a nonhomogeneous Yule process with the proportional intensity assumption to model the hazard function on recurrent events data and the associated risk factors. This method assumes that repeated events occur for each individual, with given covariates, according to a nonhomogeneous Yule process with intensity function λx(t) = λ 0(t) · exp( x′β). One of the advantages of using a non-homogeneous Yule process for recurrent events is that it assumes that the recurrent rate is proportional to the number of events that occur up to time t. Maximum likelihood estimation is used to provide estimates of the parameters in the model, and a generalized scoring iterative procedure is applied in numerical computation. ^ Model comparisons between the proposed method and other existing recurrent models are addressed by simulation. One example concerning recurrent myocardial infarction events compared between two distinct populations, Mexican-American and Non-Hispanic Whites in the Corpus Christi Heart Project is examined. ^
Resumo:
Can the early identification of the species of staphylococcus responsible for infection by the use of Real Time PCR technology influence the approach to the treatment of these infections? ^ This study was a retrospective cohort study in which two groups of patients were compared. The first group, ‘Physician Aware’ consisted of patients in whom physicians were informed of specific staphylococcal species and antibiotic sensitivity (using RT-PCR) at the time of notification of the gram stain. The second group, ‘Physician Unaware’ consisted of patients in whom treating physicians received the same information 24–72 hours later as a result of blood culture and antibiotic sensitivity determination. ^ The approach to treatment was compared between ‘Physician Aware’ and ‘Physician Unaware’ groups for three different microbiological diagnoses—namely MRSA, MSSA and no-SA (or coagulase negative Staphylococcus). ^ For a diagnosis of MRSA, the mean time interval to the initiation of Vancomycin therapy was 1.08 hours in the ‘Physician Aware’ group as compared to 5.84 hours in the ‘Physician Unaware’ group (p=0.34). ^ For a diagnosis of MSSA, the mean time interval to the initiation of specific anti-MSSA therapy with Nafcillin was 5.18 hours in the ‘Physician Aware’ group as compared to 49.8 hours in the ‘Physician Unaware’ group (p=0.007). Also, for the same diagnosis, the mean duration of empiric therapy in the ‘Physician Aware’ group was 19.68 hours as compared to 80.75 hours in the ‘Physician Unaware’ group (p=0.003) ^ For a diagnosis of no-SA or coagulase negative staphylococcus, the mean duration of empiric therapy was 35.65 hours in the ‘Physician Aware’ group as compared to 44.38 hours in the ‘Physician Unaware’ group (p=0.07). However, when treatment was considered a categorical variable and after exclusion of all cases where anti-MRS therapy was used for unrelated conditions, only 20 of 72 cases in the ‘Physician Aware’ group received treatment as compared to 48 of 106 cases in the ‘Physician Unaware’ group. ^ Conclusions. Earlier diagnosis of MRSA may not alter final treatment outcomes. However, earlier identification may lead to the earlier institution of measures to limit the spread of infection. The early diagnosis of MSSA infection, does lead to treatment with specific antibiotic therapy at an earlier stage of treatment. Also, the duration of empiric therapy is greatly reduced by early diagnosis. The early diagnosis of coagulase negative staphylococcal infection leads to a lower rate of unnecessary treatment for these infections as they are commonly considered contaminants. ^
Resumo:
A life table methodology was developed which estimates the expected remaining Army service time and the expected remaining Army sick time by years of service for the United States Army population. A measure of illness impact was defined as the ratio of expected remaining Army sick time to the expected remaining Army service time. The variances of the resulting estimators were developed on the basis of current data. The theory of partial and complete competing risks was considered for each type of decrement (death, administrative separation, and medical separation) and for the causes of sick time.^ The methodology was applied to world-wide U.S. Army data for calendar year 1978. A total of 669,493 enlisted personnel and 97,704 officers were reported on active duty as of 30 September 1978. During calendar year 1978, the Army Medical Department reported 114,647 inpatient discharges and 1,767,146 sick days. Although the methodology is completely general with respect to the definition of sick time, only sick time associated with an inpatient episode was considered in this study.^ Since the temporal measure was years of Army service, an age-adjusting process was applied to the life tables for comparative purposes. Analyses were conducted by rank (enlisted and officer), race and sex, and were based on the ratio of expected remaining Army sick time to expected remaining Army service time. Seventeen major diagnostic groups, classified by the Eighth Revision, International Classification of Diseases, Adapted for Use In The United States, were ranked according to their cumulative (across years of service) contribution to expected remaining sick time.^ The study results indicated that enlisted personnel tend to have more expected hospital-associated sick time relative to their expected Army service time than officers. Non-white officers generally have more expected sick time relative to their expected Army service time than white officers. This racial differential was not supported within the enlisted population. Females tend to have more expected sick time relative to their expected Army service time than males. This tendency remained after diagnostic groups 580-629 (Genitourinary System) and 630-678 (Pregnancy and Childbirth) were removed. Problems associated with the circulatory system, digestive system and musculoskeletal system were among the three leading causes of cumulative sick time across years of service. ^
Resumo:
In this dissertation, we propose a continuous-time Markov chain model to examine the longitudinal data that have three categories in the outcome variable. The advantage of this model is that it permits a different number of measurements for each subject and the duration between two consecutive time points of measurements can be irregular. Using the maximum likelihood principle, we can estimate the transition probability between two time points. By using the information provided by the independent variables, this model can also estimate the transition probability for each subject. The Monte Carlo simulation method will be used to investigate the goodness of model fitting compared with that obtained from other models. A public health example will be used to demonstrate the application of this method. ^
Resumo:
ZooScan with ZooProcess and Plankton Identifier (PkID) software is an integrated analysis system for acquisition and classification of digital zooplankton images from preserved zooplankton samples. Zooplankton samples are digitized by the ZooScan and processed by ZooProcess and PkID in order to detect, enumerate, measure and classify the digitized objects. Here we present a semi-automatic approach that entails automated classification of images followed by manual validation, which allows rapid and accurate classification of zooplankton and abiotic objects. We demonstrate this approach with a biweekly zooplankton time series from the Bay of Villefranche-sur-mer, France. The classification approach proposed here provides a practical compromise between a fully automatic method with varying degrees of bias and a manual but accurate classification of zooplankton. We also evaluate the appropriate number of images to include in digital learning sets and compare the accuracy of six classification algorithms. We evaluate the accuracy of the ZooScan for automated measurements of body size and present relationships between machine measures of size and C and N content of selected zooplankton taxa. We demonstrate that the ZooScan system can produce useful measures of zooplankton abundance, biomass and size spectra, for a variety of ecological studies.
Resumo:
Although several profiling techniques for identifying performance bottlenecks in logic programs have been developed, they are generally not automatic and in most cases they do not provide enough information for identifying the root causes of such bottlenecks. This complicates using their results for guiding performance improvement. We present a profiling method and tool that provides such explanations. Our profiler associates cost centers to certain program elements and can measure different types of resource-related properties that affect performance, preserving the precedence of cost centers in the call graph. It includes an automatic method for detecting procedures that are performance bottlenecks. The profiling tool has been integrated in a previously developed run-time checking framework to allow verification of certain properties when they cannot be verified statically. The approach allows checking global computational properties which require complex instrumentation tracking information about previous execution states, such as, e.g., that the execution time accumulated by a given procedure is not greater than a given bound. We have built a prototype implementation, integrated it in the Ciao/CiaoPP system and successfully applied it to performance improvement, automatic optimization (e.g., resource-aware specialization of programs), run-time checking, and debugging of global computational properties (e.g., resource usage) in Prolog programs.
Resumo:
We propose a method to measure real-valued time series irreversibility which combines two different tools: the horizontal visibility algorithm and the Kullback-Leibler divergence. This method maps a time series to a directed network according to a geometric criterion. The degree of irreversibility of the series is then estimated by the Kullback-Leibler divergence (i.e. the distinguishability) between the in and out degree distributions of the associated graph. The method is computationally efficient and does not require any ad hoc symbolization process. We find that the method correctly distinguishes between reversible and irreversible stationary time series, including analytical and numerical studies of its performance for: (i) reversible stochastic processes (uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic processes (a discrete flashing ratchet in an asymmetric potential), (iii) reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv) dissipative chaotic maps in the presence of noise. Two alternative graph functionals, the degree and the degree-degree distributions, can be used as the Kullback-Leibler divergence argument. The former is simpler and more intuitive and can be used as a benchmark, but in the case of an irreversible process with null net current, the degree-degree distribution has to be considered to identify the irreversible nature of the series