871 resultados para Therapeutic potential
Resumo:
O controle de micro-organismos infecciosos multirresistentes às vezes é ineficaz mesmo com o desenvolvimento de novos antibióticos. Diversos extratos de plantas medicinais têm efeitos antimicrobianos o que pode representar uma alternativa terapêutica para doenças infecciosas, principalmente quando associados aos antibióticos de uso clínico. O objetivo do trabalho foi avaliar a atividade antibacteriana de plantas medicinais sobre bactérias multirresistentes e os efeitos de sua interação com drogas antimicrobianas. Foi determinada a atividade antibacteriana de extratos e frações das plantas Eleutherine plicata (marupazinho), Geissospermum vellosii (pau-pereira) e Portulaca pilosa (amor-crescido) frente a isolados de Staphylococcus aureus Oxacilina Resistente (ORSA) e de Pseudomonas aeruginosa multirresistente, provenientes de processos clínicos humanos, assim como a interação destes produtos vegetais com drogas antimicrobianas de uso clínico. A atividade antibacteriana foi determinada pelo método de disco difusão em ágar Muller Hinton e a Concentração Inibitória Mínima (CIM) pela técnica de microdiluição em placas utilizando caldo Muller Hinton como meio de cultura e resazurina a 0,01% como revelador de crescimento bacteriano. Os extratos e frações foram testados nas concentrações de 500, 250, 125, 62,5, 31,2 e 16,2 μg/mL dissolvidos em DMSO a 10%. As plantas E. plicata e G. vellosii demonstraram atividade contra os isolados ORSA com CIM de 125 μg/mL, enquanto que P. pilosa teve ação sobre os isolados de P. aeruginosa multirresistentes com CIM de 250 μg/mL. Ocorreram 25% de sinergismo e apenas 5% de antagonismo entre as 120 interações de produtos vegetais e drogas antimicrobianas testadas. Frente aos isolados ORSA houve sinergismo com as drogas ciprofloxacina, clindamicina e vancomicina tanto com os derivados de E. plicata como os de G. vellosii. Os produtos de P. pilosa potencializaram a ação das drogas aztreonam, cefepime e piperacilina+tazobactam frente aos isolados de P. aeruginosa multirresistentes. Os resultados comprovaram o potencial das plantas E. plicata, G. vellosii e P. pilosa no controle de infecções bacterianas envolvendo fenótipos multidrogas resistentes (MDR) e que a sua interação com drogas antibacterianas pode representar uma nova alternativa na terapia destas infecções.
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The treatment of central nervous system (CNS) diseases is a major challenge. The presence of the barrier intended to protect the brain from unwanted molecules also impairs the efficacy of CNS-targeted drugs. The discovery of drug targets for CNS diseases opens a door for the selective treatment of these diseases. However, the physicochemical properties of drugs, including their hydrophilic properties and their peripheral metabolism, as well as the blood-brain barrier, can adversely affect the therapeutic potential of CNS-targeted drugs. Although peptides are often metabolized by enzymes, they are of particular interest for the treatment of CNS diseases or as carriers to deliver drugs to the brain. In this review, we discuss the use of peptides as potential prodrugs for the treatment of CNS diseases.
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mesenchymal stem cells (MSCs) are a heterogeneous population of cells that proliferate in vitro as plastic-adherent cells, have fibroblast-like morphology and can differentiate into bone, cartilage and fat cells. Therapeutic potential of MSCs have been studied in experimental models, such as rabbit, in Laboratory of Cell Engineering of Botucatu. However, no specific markers have been reported for expanded rabbit MSCs, which hampers the isolation of pure MSC populations by immunophenotypic characterization. Thus, the objective of this study was to produce monoclonal antibodies (mAbs) to rabbit MSCs. MSCs derived from rabbit bone marrow (BM) were isolated, cultured, expanded ex vivo, and immunized into three BALB/c mices, and spleen cells subsequently harvested were used to generate hibridoma cell lines secreting antibodies against MSCs. Hybridoma cells were screened by flow cytometry and antibody-producing cells were subjected to subsequent rounds of retests. MSC1-160 obtained the best positivity for IgG expression and was cloned by limiting dilutions and micromanipulation. Ascitic fluid from ten best clones was purified by affinity chromatography in Protein A-sepharose CL-4B column and purification control was performed by electrophoresis in agarose gels. The purified IgG were tested against rabbit MSCs, obtaining high positivity by flow Cytometry. In conclusion, we developed 10 mAbs, MSC1-160 A20, A30, A41, A47, A55, A60, A63, A69, A81, and A82, that recognize rabbit MSC cell surface antigens showing potential for immunophenotypic characterization of rabbit MSC cell lines
Resumo:
The increase of the antimicrobial resistance and its propagation around the world are the biggest threats to the public health care and to the treatment of diseases caused by microorganisms. Nowadays the antimicrobial resistance has increased abruptly. The essential oils are volatile and aromatic compounds derived from parts of plants as flowers, leafs, fruits, seeds, roots, sprouts, among others. The activity of extracts and essential oils of several plant species have been recognized and studied by empirical methods since a long time, but its antimicrobial activities were confirmed recently. Medicinal plants are used in folk medicine as medicines, antibiotic, analgesic, sedative and anti-inflammatory. The use of medicinal plants like source of medicines is an alternative of therapeutics for diseases treatment. In Brazil, studies with this goal are very important, once medicinal plants have been used as a choice of treatment and prevention of infections and diseases in health areas. Considering the fact that some products from medicinal plants have antimicrobial properties it is expected that using screening programs, new potential medicaments could be developed. Otherwise, scientific researches focused on determining therapeutic potential of plants are limited, there are lack of scientific studies which confirms the potential antibiotics properties of a large number of plants. The aim of the present study is determinate the antimicrobial activity of 10 medicinal species belonging to CPMA - Collection of Medicinal and Aromatic Plants from CPQBA/UNICAMP. The minimal inhibitory (MIC) and minimal bactericidal or fungicidal concentration (MBC) will be determined against the bacteria Escherichia coli, Pseudomonas aeruginosa, Salmonella choleraesuis, Staphylococcus aureus and the yeast Candida albicans. Furthermore, will be conducted chemical identification and fractionation of essential oils and extract with better activity
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Curcumin has therapeutic potential in preventing several types of cancer, including colon, liver, prostate, and breast. The goal of this study was to evaluate the chemopreventive activity of systemically administered curcumin on oral carcinogenesis induced by 4-nitroquinolone-1-oxide (4-NQO). A total of 50 male albino rats, Rattus norvegicus, (Holtzman), were divided into five groups (n=10 per group). Four of these groups were exposed to 50 ppm 4-NQO in their drinking water ad libitum for 8 or 12 weeks, two groups were treated with curcumin by oral gavage at 30 or 100 mg/kg per day, and one group was treated with corn oil (vehicle) only. The negative control group was euthanized at baseline. Tongues of all animals were removed after euthanasia and used in the subsequent analysis because the tongue is the primary site of carcinogenesis in this model. Descriptive histological analysis and immunohistochemistry for PCNA, Bcl-2, SOCS1 e-3, and STAT3 were performed to assess the oncogenic process. The gene expression of Vimentin, E-cadherin, N-cadherin, or TWIST1 was assessed using RT-qPCR as a representative of epithelial-mesenchymal transition (EMT) events. The administration of curcumin at 100 mg/kg during the 12 weeks markedly decreased the expression of PCNA, Bcl-2, SOCS1 e -3, and STAT3. Curcumin also minimized the cellular atypia under microscopic analysis and diminished the expression of the genes associated with EMT. These findings demonstrate that the systemic administration of curcumin has chemopreventive activity during oral carcinogenesis induced by 4-NQO.
Resumo:
Curcumin has therapeutic potential in preventing several types of cancer, including colon, liver, prostate, and breast. The goal of this study was to evaluate the chemopreventive activity of systemically administered curcumin on oral carcinogenesis induced by 4-nitroquinolone-1-oxide (4-NQO). A total of 50 male albino rats, Rattus norvegicus, (Holtzman), were divided into five groups (n = 10 per group). Four of these groups were exposed to 50 ppm 4-NQO in their drinking water ad libitum for 8 or 12 weeks, two groups were treated with curcumin by oral gavage at 30 or 100 mg/kg per day, and one group was treated with corn oil (vehicle) only. The negative control group was euthanized at baseline. Tongues of all animals were removed after euthanasia and used in the subsequent analysis because the tongue is the primary site of carcinogenesis in this model. Descriptive histological analysis and immunohistochemistry for PCNA, Bcl-2, SOCS1 e-3, and STAT3 were performed to assess the oncogenic process. The gene expression of Vimentin, E-cadherin, N-cadherin, or TWIST1 was assessed using RT-qPCR as a representative of epithelial-mesenchymal transition (EMT) events. The administration of curcumin at 100 mg/kg during the 12 weeks markedly decreased the expression of PCNA, Bcl-2, SOCS1 e-3, and STAT3. Curcumin also minimized the cellular atypia under microscopic analysis and diminished the expression of the genes associated with EMT. These findings demonstrate that the systemic administration of curcumin has chemopreventive activity during oral carcinogenesis induced by 4-NQO. J. Cell. Biochem. 116: 787-796, 2015. (C) 2014 Wiley Periodicals, Inc.