953 resultados para The Black Church


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dataset is based on samples collected in the summer of 1999 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 59 samples (from 24 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "15BO1997001" dataset is based on samples collected in the spring of 1997. The whole dataset is composed of 66 samples (from 27 stations of National Monitoring Sampling Grid) with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Lyudmila Kamburska using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present high resolution profiles for the methane concentration and the carbon isotope composition of methane from surface sediments and from the sediment-water transition in the Black Sea. At shallow water sites methane migrates from the sediment into the water column, and the magnitude of this upward migrating flux depends on the depth of the sulfate-methane transition (SMT) in the sediment. The isotope data reveal that the sediments at shallow water sites are a source for methane depleted in 13C relative to the isotope composition of methane in the water column. At deep water sites the methane concentration first decreases with depth in the sediment to reach lowest values at the Unit I to Unit II transition. Below this transition the concentration increases again. Numerical modeling of methane concentration and isotope data shows that high methane oxidation rates occur in the surface sediment layer, indicating that the removal of methane in the surface sediments is not related to the anaerobic oxidation of methane coupled to sulfate reduction that occurs a few meters deep in the sediment, at the SMT. Instead, near-surface methane consumption in the euxinic Black Sea sediments appears to be related to lithological stratification. Furthermore, a map of the diffusive methane fluxes in the Black Sea surface sediments indicates that approximately half of the Black Sea seafloor acts as a sink for methane and thus limits the flux of methane to the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferruginate shells and tubular worm burrows from the oxygenated zone of the Black Sea (Kalamit Bay and Danube River mouth) are studied by transmission and scanning electron microscopy combined with analyses of elemental composition. Iron and manganese oxyhydroxide nodules considered here are enriched in phosphorus. They contain variable amounts of terrigenous and biogenic material derived from host sediments. Oxyhydroxides are mainly characterized by colloform structure, whereas globular and crystalline structures are less common. The dominating iron phase is represented by ferroxyhite and protoferroxyhite, whereas the manganese phase is composed of Fe-free vernadite. Concentrations of Mn, As, and Mo are 12-18 times higher relative to sediments, while concentrations of Fe, P, Ni, and Co increase 5-7 times during nodule formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "15BO1997001" dataset is based on samples collected in the spring of 1997. The whole dataset is composed of 66 samples (from 27 stations of National Monitoring Sampling Grid) with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. The collected material was analysed using the method of Dimov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. The collected material was analysed using the method of Dimov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dataset is based on samples collected in the spring of 2002 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 76 samples (from 27 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Sampling on zooplankton was performed from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processes of sedimentation in marine basins locating in the area of interaction of the largest continental plates (African and Eurasian) are under consideration in the book. During the giant tectonic reconstruction of the Tethys Ocean semi-enclosed seas - the Mediterranean and Black originated. Their sedimentary sequence contains a recording of complex history of the Alpine-Himalayan belt. The dramatic history of the seas and their feeding catchments during Cenozoic is described in detail on the base of unique material of coring and deep-sea drilling, as well as a variety of geophysical and geochemical studies. Particular attention is paid to the history of volcanism - terrestrial and underwater - with correlation of ash falls accumulated on the land and in marine sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of picophytoplankton were carried out in the open Black Sea from February to April 1991 with concomitant blooming of diatoms. During this period cyanobacteria predominated in picoplankton averaging 98.8% of total picophytoplankton abundance and 95% of total picoplankton biomass. In February number of cells reached 1.5x10**9 per liter in the East Black Sea. Picoplankton biomass decreased during the observation period. From February to March biomass varied from 452 to 4918 mg/m**2 (av. 1632 mg/m**2), and from March through April from 4 to 656 mg/m**2 (av. 190 mg/m**2). Vertical distribution of picoplankton was determined by the upper margin of the main pycnocline. The major part of picoplankton biomass occurred in the mixed layer. With appearance of seasonal pycnoclines in the last days of March maximum biomass occurred under the upper mixed layer. No relationship was observed between Nitzschia delicatula bloom and picoplankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributions of rare earth element contents in surface layer bottom sediments, in vertical sediment section, and in Fe-Mn nodules of the Black Sea have been studied. An inverse relationship of rare earth element contents and CaCO3 contents has been found in the studied sediments. Fe-Mn nodules of the Black Sea do not concentrate rare earth elements, and their rare earth element composition differs from one of host sediments. It is concluded that rare earth elements are bound with clay minerals of bottom sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SESAME dataset contains mesozooplankton data collected during April 2008 in the North-West Black Sea (between 44°46' N and 42°29'N latitude and 28°64'E and 30°59'E longitude). Mesozooplankton sampling was undertaken at 9 stations where samples were collected using a Nansen closing net in the 0-10, 10-25, 25-50, 50-100, 100-150, 150-180 m layer. The dataset includes 28 samples analysed for mesozooplankton species composition, species abundance and total biomass. The Taxon-specific mesozooplankton abundance sample or aliquots were analyzed under the binocular microscope. Taxonomic identification was done according to Morduhai-Boltovskii et al. 1968. Total biomass was estimated using a tabel with wet weight for each species an stage (Petipa method).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gut dissection of fixed individuals from samples collected during Cruise 6 of R/V Vityaz-2 in April-May 1984 was used to study feeding of Sagitta setosa in the layers of daytime plankton accumulation at the lower boundary of the oxycline. The principal food was copepodite stage V of Calanus and females of Calanus and Pseudocalanus. Analysis of daytime and night data with reference to length of migratory alterations of Sagitta populations and gut passage time indicates that they feed actively in the layers of day¬time plankton accumulations. Total food consumption during time spent in the subsurface layers ranged from 0.025-0.097 cal/indiv. in 12 h, equivalent to 37-143% of their metabolic energy expenditure. Over the course of 12 h Sagitta population consumes 0.3-5% and 0.5-6% of population of stage V copepodites and females of Calanus and Pseudocalanus females, respectively.